Scientific journal
Modern high technologies
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 0,940

RESEARCH OF LIQUID FLOW IN THE FLOWING PART OF THE VORTEX PUMP AT DIFFERENT DEPTH OF THE GUIDING LATTICE

Chubarov F.L. 1 Efremov K.M. 2 Shitokhina O.G. 2 Golikov A.S. 2
1 Russian State Agrarian University K.A. Timiryazev
2 Bauman Moscow State Technical University
Pumps of various design is essential part of any modern production equipment. Among pumps is mode of operation based on vortex effect. It is very essential the ability to pump gas phase on the inlet and self-priming for this pumps. The wide application of vortex pump used in requirement of small flow with great pressure difference in industrial application including transit the general liquid fuel types. In this paper has obtained the simulation of flow in vortex pump with cylindrical rotor on various operation range in ANSYS software. This research studied the design impact of separate parts on the pump performance. The impact of lattice in rotor on pump vortex pressure has researched. Also, take in account the effect of lattice lifting angle on the flow in pump channel. Calculation consider the effect of hollow aperture on pump key features. The carried analysis of results show, the optimal dependence between the channel depth and rotor hole is 1 in pressure difference between 102,1 and 123,1 kPa.
vortex pump
guiding apparatus
pressure
ANSYS

Насосы различных конструкций являются обязательной частью практически любого современного производственного оборудования. Насосные машины лопастного типа, в том числе работа которых основана на центробежном эффекте, благодаря своим возможностям широко применяются в различных областях человеческой деятельности (например, насосные агрегаты для транспортировки шлама в горных разработках, на заводах по производству строительных материалов) [1, 2].

Появление вихревых насосов вызвано необходимостью забирать воздух из всасывающей трубы, что в некоторой степени решает проблему получения самовсасывающего насоса.

Вихревые насосы широко используются при необходимости создать эффективный напор с относительно небольшой подачей. Возможность их использования в системах заправки топливом обусловливает функция перекачки двухфазных смесей, позволяющая использовать вихревые насосы для перекачки легких жидкостей, таких как бензин и керосин [3].

Самовсасывающей способностью располагает большая часть вихревых насосов. Перемена напора в вихревом насосе слабее воздействует на подачу, чем в центробежном. Недостатком вихревого насоса считается присутствие при больших мощностях невысокого КПД, не превосходящего в рабочем режиме 45 %. У наиболее распространенных насосов КПД 35–38 % [4].

Для повышения КПД необходимо исследовать течение жидкости. Эту задачу можно выполнить с помощью компьютерного моделирования и специального программного обеспечения для моделирования гидродинамики.

Цель исследования: провести математический эксперимент для определения оптимальных отношений между основными элементами конструкции вихревого насоса и их влиянием на его напорную характеристику при различных соотношениях hк/d0. Исследования проводились с использованием модулей системы ANSYS.

Насосный агрегат состоит из двух основных частей. Первая – это ротор, который представляет собой цилиндрическое тело вращения с выемками на боковой поверхности в виде цилиндрических отверстий; вторая – корпус, охватывающий ротор, с внутренними стенками, образующими винтовой канал (рис. 1) [5]. В результате математического эксперимента были проведено изучение влияния глубины винтового канала на перепад давления, создаваемый насосом, а также на поведение жидкости в проточной части насоса.

missing image file

Рис. 1. Схема гидравлической машины с вихревым эффектом: 1 – цилиндрический барабан; 2 – винтовые каналы

Моделирование перемещения жидкости в проточной части насосного агрегата проводилось в программном комплексе ANSYS.

Материалы и методы исследования

Модель насоса состоит из цилиндрического ротора с отверстиями диаметром 18 мм и глубиной 14 мм на боковой поверхности (внешние габаритные размеры: диаметр D 189 мм и длина 160 мм) и корпуса, представленного цилиндрической фигурой вращения с винтовым внутренним каналом (габаритные размеры: внешний диаметр D2 251 мм и длина 240 мм).

Количество оборотов ротора постоянно и равно 50 Гц. Соотношения между элементами конструкции принимались следующими: hк/d0 = 1,25; hк/d0 = 1; hк/d0 = 0,75; hк/d0 = 0,5. Рабочее тело, прокачиваемое через насос, – вода. Давление на входе равно 101 304 Па (рис. 2).

missing image file missing image file

А) Б)

missing image file missing image file

В) Г)

Рис. 2. 3D-варианты модели проточной части насосного агрегата отношениях глубины канала к поперечнику отверстий для всех вариантов исследований hк/d0: А – 1,25; Б – 1; В – 0,75; Г – 0,5

В системе твердотельного моделирования SolidWorks были построены необходимые 3D-модели исследуемого агрегата с различным соотношением hк/d0.

В ходе математического эксперимента были исследованы изменение давления, формируемого вихревым насосом, а также формирование линий тока в проточной части при заданных соотношениях hк/d0 с применением модуля моделирования течения жидкости ANSYS.

Результаты исследования и их обсуждение

На рис. 3 приведены распределения давлений, полученные при моделировании движения жидкости через ротор с различным соотношением hк/d0. При соотношении hк/d0 = 1,25 давление на выходе из насоса изменяется в диапазоне от 5,9 кПа до 91,7 кПа (рис. 3, А), при соотношении hк/d0 = 1 давление на выходе из насоса лежит в диапазоне от 102,1 кПа до 123,1 кПа (рис. 3, Б), при соотношении hк/d0 = 0,75 давление на выходе из насоса лежит в диапазоне от 96,8 кПа до 116,2 кПа (рис. 3, В), при соотношении hк/d0 = 0,5 давление на выходе из насоса лежит в диапазоне от 84,1 до 112,1 кПа (рис. 3, Г).

missing image file

А)

missing image file

Б)

missing image file

В)

Рис. 3. Распределения давлений при различных hк/d0: А – 1,25; Б – 1; В – 0,75; Г – 0,5 (начало рисунка)

missing image file

Г)

Рис. 3. Распределения давлений при различных hк/d0: А – 1,25; Б – 1; В – 0,75; Г – 0,5 (окончание рисунка)

На рис. 4 представлены линии тока в проточной части насоса. При соотношении hк/d0 = 1,25 и hк/d0 = 1 (рис. 4, А и 4, Б) создается устойчивый направленный поток жидкости на входе в насос. Также стоит отметить, что при соотношении hк/d0 = 1 поток на выходе более закручен по сравнению с соотношением hк/d0 = 1,25. Винтовые решетки при соотношении hк/d0 = 0,75 и hк/d0 = 0,5 (рис. 4, В и 4, Г) не создают устойчивого направленного потока жидкости на входе в насос, но при соотношении hк/d0 = 0,75 сохраняется закрученный поток жидкости на большем протяжении, чем при соотношении hк/d0 = 0,5.

missing image file

А)

missing image file

Б)

Рис. 4. Линии тока при различных hк/d0: А – 1,25; Б – 1; В – 0,75; Г – 0,5 (начало рисунка)

missing image file

В)

missing image file

Г)

Рис. 4. Линии тока при различных hк/d0: А – 1,25; Б – 1; В – 0,75; Г – 0,5 (окончание рисунка)

Выводы

Результаты моделирования движения жидкости в вихревом насосе показывают, что соотношение hк/d0 = 1 является наиболее подходящим, давление на выходе из насоса выше, чем при других значениях hк/d0, и находится в диапазоне от 102,1 кПа до 123,1 кПа, создавая устойчивый направленный поток жидкости на входе в насос и на выходе, с большей закруткой потока, по сравнению с соотношениями hк/d0 = 1,25, hк/d0 = 0,75 и hк/d0 = 0,5.