Scientific journal
Modern high technologies
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 0,940

AN OPTIMIZATION SOCIO-ECOLOGICAL-ECONOMIC MODEL OF THE REGION

Medvedev A.V. 1
1 Kemerovo State University
An optimization economic and mathematical model of the region as an organizational system has been constructed and described, taking into account the managerial, social and environmental aspects of its functioning. A brief description of some modern works on the research topic is given, the approaches and principles of modeling used are formulated. When building a model, the main emphasis is on the application of the principles of model and information technology balance, as well as on the use of an optimization approach. The mathematical model is formulated in the form of a three-criteria multiparameter linear programming problem that describes the interaction of such economic agents as the producer, the consumer and the managing (tax) center of the region. The model is built taking into account the availability of an automated information system that allows for multi-parameter, multi-criteria analysis of the linear programming problem to search for Pareto-optimal investment strategies, taking into account achieving a compromise of the interests of the specified economic agents of the region. The interconnected and complementary use of the described model, coupled with automated tools for its analysis, makes it possible in the future to consider it as the main element of decision support systems in the management of a region with a large number of production units (enterprises, industries, areas of economic activity), and also to apply it to identifying and obtaining optimal characteristics of the development of the region as an organizational system, and solving problems of planning and forecasting its development.
socio-economic system
principles of regional modeling
economic agents
multicriteria linear programming problem
decision support system

Задача изучения процессов развития региональных социально-экономических систем (СЭС) остается актуальной, особенно в условиях наличия кризисных явлений различного масштаба в них и необходимости принятия оперативных решений при планировании, прогнозировании и управлении такими системами. Получение практически значимых результатов в сфере социально-экономического анализа и прогнозирования развития регионов, территорий, кластеров и других крупных социально-экономических систем затруднительно без использования методов математического моделирования и автоматизированных информационно-аналитических систем. При этом эффективность применения указанного инструментария достигается при выполнении принципа модельной и IT-сбалансированности, суть которого кратко можно выразить так: наличие обеих составляющих – математической модели и автоматизированного программно-аналитического комплекса – не гарантирует эффективного анализа изучаемых процессов и систем, требуя их согласованного взаимодействия. Или иначе: не всякая математическая модель позволяет извлечь из нее знание об изучаемом объекте без возможности автоматизировать анализ больших объемов циркулирующей в ней информации, и, наоборот, автоматизированные средства компьютерного анализа информации могут оказаться бесполезными в отсутствие адекватной математической модели объекта или наличия модели, расчеты по которой затруднены в условиях реальных прикладных задач. В настоящее время при моделировании крупных СЭС используются комбинации динамических и статических моделей [1, с. 11–12; 2, с. 19, 176]. При этом сохраняется и значительный поток публикаций, описывающих различные методы анализа региональных моделей СЭС. Например, в работе [3] описано применение агент-ориентированных моделей региона в рамках метода имитационного моделирования, в [4] рассматриваются макроэкономические, а в [5] – мезоэкономические особенности функционирования региона, работа [6] содержит краткие обзоры различных моделей региона, а [7] – описание моделей активного управления социально-экономическими системами. При этом большинство публикаций касается либо отдельных концептуальных вопросов, вопросов моделирования, разработки алгоритмов численного анализа моделей, и, соответственно, имеется незначительное количество работ системного характера, например [8], в которых рассматривается весь взаимоувязанный комплекс аналитических инструментов – концепция, математические модели, методы и алгоритмы их анализа, объединяемые в автоматизированные системы поддержки принятия решений (СППР). Следует отметить, что математические модели в приведенных выше публикациях имеют ряд особенностей, зачастую затрудняющих разработку соответствующих СППР, ориентированных на оперативную экспертную поддержку оптимальных решений при управлении развитием региональных СЭС или выявление оптимального баланса циркулирующих в них потоков. В частности, в агент-ориентированных моделях региона [3] акцент делается на имитационное моделирование поведения децентрализованных агентов в регионе, и напрямую не ставится задача выявления оптимальных параметров функционирования региона. В моделях [4; 5] рассматривается динамика экономического процесса в форме системы соотношений Р. Соллоу с заранее заданной возрастающей производственной функцией (преимущественно в форме Кобба – Дугласа), не выявляющей жизненный цикл развития региона. При построении модели работы [6] используется концепция межотраслевого баланса, имеющая ряд критических замечаний с точки зрения корректности использования открытой статистической информации о функционировании экономики региона. Динамическая модель, описанная, например, в [7], не является оптимизационной, а модель [8] является примером нелинейных задач экономической динамики, в которых, вообще говоря, затруднен их численный анализ, особенно в случае большой размерности решаемых задач.

Целью данного исследования является построение многокритериальной оптимизационной социо-эколого-экономической модели такой крупной организационной системы, как социально-экономический регион, с учетом его управленческой, социальной и экологической составляющих.

Материалы и методы исследования

При моделировании крупных СЭС необходимо учитывать многочисленные особенности этих систем: динамический характер, наличие многих участников, сложную взаимозависимость экономических, социальных, экологических, управленческих процессов, характеристики материальных и финансовых потоков (их структуру, стратегические и тактические составляющие), наличие многочисленных рисков функционирования. Это требует применения соответствующих принципов, моделей, методов и алгоритмов их анализа и синтеза, адекватно отражающих эти особенности. К указанным принципам, помимо упомянутого выше принципа модельно-алгоритмической сбалансированности, необходимо отнести принципы оптимизационности и многокритериальности.

Принимая во внимание предмет исследования (региональные социально-экономические процессы), полноценное описание функционирования региона требует использования динамических моделей [9, гл. 3]. Кроме того, необходимость принятия эффективных управленческих решений инвестиционного, производственного, финансового характера обуславливает и необходимость применения оптимизационного подхода, позволяющего принимать решения с учетом возможности выявления экономического потенциала (максимальных возможностей) СЭС [2, с. 9]. Все вместе приводит к выводу, что в идеале требуется решение оптимизационных динамических задач очень большой размерности, анализ которых с помощью автоматизированных информационных систем до сих пор встречает значительные трудности, в том числе вычислительного характера (например, накопление ошибок округления при использовании итерационных методов или зацикливание при реализации точных методов). В этой связи при решении динамических оптимизационных задач целесообразно применение методов идеализации, абстрагирования, агрегирования и других методологических приемов, суть которых сводится к упрощению описываемых процессов, выделению основных (ключевых) процессов, осреднению их характеристик на несколько подпроцессов и/или периодов времени (в том числе на один) и др. К таким приемам можно отнести линеаризацию моделей (рассмотрение линейной динамики по искомым переменным), алгоритмов анализа, переход к статическим версиям (когда многошаговая во времени задача рассматривается как одношаговая) и др.

В данной работе при моделировании и исследовании региона используется линейная, трехкритериальная одношаговая модель оптимального управления, алгоритмы и методы дисконтирования и структурирования (по доходно-расходным, тактико-стратегическим и т.п. признакам) финансовых потоков, агрегирования, усреднения характеристик активов, продукции, выделения этапов функционирования и др. Концепция построения математической модели при проведении данного исследования опубликована в работе [1, с. 10–32] с модификациями, изложенными в [2, с. 16–34].

Пусть n – количество производственных подразделений, видов производимой в регионе продукции и основных производственных фондов (ОПФ) производственных подразделений для ее производства (используется принцип «чистых отраслей»: на каждом ОПФ производственного подразделения производится один вид продукции (товара или услуги)), k = 1, …, n – порядковый номер производственного подразделения, его ОПФ, производимой продукции. Производимая в регионе продукция и соответствующие ОПФ производственного подразделения характеризуются следующим набором показателей:

Pk – цена единицы продукции k-го вида (денежных единиц за единицу продукции, д.е. / ед. прод);

qk – стоимостной спрос на продукцию k-го вида (денежных единиц, д.е.);

сk – cтоимость ОПФ k-го производственного подразделения (денежных единиц за комплект ОПФ, д.е. / ед ОПФ);

Тk – срок службы ОПФ k-го производственного подразделения (единиц времени, ед. врем.);

Vk – производительность ОПФ k-го производственного подразделения (ед. прод. / ед. ОПФ);

δk = PkVk/сk – фондоотдача ОПФ k-го производственного подразделения. Особенности производства продукции учитываются с помощью следующих показателей:

βk – доля от суммы всех производственных затрат k-го производственного подразделения, используемая для оплаты труда (зарплатоемкость производства);

pk – доля материальных затрат k-го производственного подразделения в сумме всех производственных затрат (материалоемкость производства);

ξk, Dk – соответственно удельный и предельно допустимый объемы выбросов загрязняющего окружающую природную среду (ОПС) вещества при производстве k-й продукции.

При функционировании региона рассматриваются следующие виды налогов для каждого из его производственных подразделений, а также для населения:

N1 – налог на добавленную стоимость (НДС);

N2 – налог на имущество (НИ);

N3 – налог на прибыль (НП);

N4 – страховые взносы производителя в социальные фонды (СВСФ);

N5 – налог на доходы физических лиц (НДФЛ);

N6 – иные, пропорциональные объемам производства, налоговые и неналоговые затраты (например, налог на добычу полезных ископаемых, транспортный, земельный налог и прочие платежи), учитываемые в зависимости от специфики региона и основных реализуемых в нем проектов;

αik, i = 1, …, 6 – ставки, соответствующие указанным налогам и сборам;

αsk – ставка экологического сбора.

Следует отметить, что для различных производственных подразделений региона могут применяться различные формы налогообложения – от полных схем до упрощенных форм изъятий единого налога, что обуславливает использование векторных значений конкретных налогов (для каждого производственного подразделения). То же касается и ставки экологического сбора в связи с тем, что каждый вид производства в регионе может быть дифференцирован по производимому им уровню экологических загрязнений.

Примем, что экономическими агентами в регионе являются производственный (Р) и потребительский (С) секторы экономики, а также управляющий (налоговый) центр (Т).

В качестве критериев эффективности функционирования экономических агентов принимаются максимумы потоков стратегического (как правило, долгосрочного) характера, рассматриваемые ими как жизненно необходимые. Для производителя таковыми считаются прибыль, для потребителя – поток заработной платы, для налогового центра – налоговые потоки. Предполагается, что каждый участник регионального социо-эколого-экономического процесса обладает начальными собственными средствами DSP, DSС, DSТ, а их текущая деятельность, связанная с финансированием оборотных затрат, может кредитоваться, соответственно, под ставки r0P, r0C, r0T на сроки Т0P, Т0C, Т0T. Кроме того, проект развития региона описывается следующими параметрами: T – горизонт планирования (в единицах времени, ед. врем); r – номинальная ставка дисконтирования, учитывающая инфляцию и требования инвестора (кредитора); rэmissing image file – эффективная ставка дисконтирования в предположении постоянства потоков стратегических доходов на горизонте Т; κ – доля дотаций производителю от налогового центра; 1-κ – доля дотаций потребителю от налогового центра; νk – удельное (нормативное) годовое потребление продукции k-го вида на одного человека в виде доли выручки от продажи k-й продукции (единиц продукции на человека, ед. пр. /чел.), N – численность населения (человек, чел.) региона. Ограничения функционирования региона представлены в таблице.

Обозначим следующие искомые переменные: хk – оптимальный объем (в д.е.) инвестиций в ОПФ k-го производственного подразделения (д.е.); хn+1 – оптимальный объем (в д.е.) дотаций в регион; хn+2, хn+3, хn+4 – оптимальный объем (в д.е.) кредитов производителю, потребителю и налоговому центру региона соответственно.

С учетом введенных обозначений рассмотрим следующую оптимизационную, трехкритериальную математическую модель оценки экономической эффективности региона в матричной форме трехкритериальной задачи линейного программирования:

A(3n+9)×(n+4)‧x(n+4)×1 ≤ B(3n+9)×1; x(n+4)×1 ≥ 0;

J = (c(P), c(C), c(T)→max (*)

где A = missing image file

Оn, О3×n, Оn×3 – нулевые матрицы указанных нижними индексами размеров,

Еn, Е3 – единичные матрицы указанных размеров,

missing image file,

missing image file,

B(3n+9)×1=(I1,…,In;q1,…,qn;P1D1/ξ1,…,PnDn/ξn;DSP,DSС,DSТ;0;-Dotmin,Dotmax;Crmax1,Crmax2,Crmax3)T;

missing image file

Ограничения функционирования региона

№ пп

Ограничения

Описание

1

Инвестиционные

непревышение максимальных значений инвестиций Ik в k-е производственное подразделение

2

Производственно-

экологические

2.1) ограничения выручки от продажи k-й продукции стоимостными оценками спроса на продукцию и уровнем загрязнений, порожденных производством продукции k-го производственного подразделения;

2.2) ограничения выручки от продажи k-й продукции наличными производственными мощностями k-го производственного подразделения;

2.3) ограничения предельно допустимого объема выбросов загрязняющего ОПС вещества при производстве k-й продукции

3

Финансовые

3.1) требования неотрицательности собственных средств производителя, потребителя и налогового центра;

3.2) ограничения объемов кредита для производителя, потребителя и налогового центра заданными величинами;

3.3) ограничения суммарных объемов дотации управляющего центра заданными нижней и верхней границами

Результаты исследования и их обсуждение

В представленной модели первые n строк матрицы А и, соответственно, компонент вектора b отвечают ограничениям на объемы инвестиций в ОПФ k-й продукции, следующие n строк матрицы А и, соответственно, компонент вектора b – ограничения на спрос, и, наконец, 3-я группа из n строк А и компонент b – экологические ограничения на объем производимой продукции. Строки 3n+1, 3n+2, 3n+3, 3n+4 матрицы А и соответствующие компоненты вектора b соответствуют условиям платежеспособности производителя, потребителя и управляющего центра, а также условию покрытия потребительской корзины уровнем доходов потребителя в форме заработной платы от производителя; строки 3n+5,…,3n+9 и соответствующие компоненты вектора b – условия ограниченности дотаций и кредитов. Учитывая линейность построенной модели, ее можно свести к эквивалентной ей, однокритериальной, с выпуклой линейной сверткой критериев Jсв=μ1с(Р)+μ2с(С)+μ3с(Т). Как задача, имеющая в качестве допустимого множества непустой компакт (легко проверяется принадлежность тривиального решения допустимому множеству), (*) разрешима и может быть подвергнута многопараметрическому и многокритериальному анализу с помощью, например, пакета [10]. Представленная модель обобщает модели, построенные в [1; 2], учитывая экологические ограничения производства в регионе, а также потребительскую корзину населения. С другой стороны, она является частным случаем указанных моделей в предположении максимального использования производственных мощностей рассматриваемых региональных производственных подразделений.

Заключение

Взаимосвязанное и взаимодополняющее использование модели (*), вкупе с программным инструментарием ее автоматизированного анализа, позволяет в перспективе рассматривать ее как основной элемент системы поддержки принятия решений в сфере управления регионом с большим количеством производственных подразделений (предприятий, отраслей, видов экономической деятельности), а также применять инструментально-аналитический комплекс для получения оптимальных характеристик развития региона как организационной системы, в аспекте решения планово-прогнозных задач его развития. Следует подчеркнуть, что идентичные по своей математической сути (одно- и многошаговые линейные задачи математического программирования) модели крупных региональных социально-экономических систем рассмотрены в работах, приведенных в списке литературы, и в них получены нетривиальные решения. Это позволяет обоснованно рассчитывать на возможности включения представленной социо-эколого-экономической модели в автоматизированные системы поддержки принятия решений для эффективного управления современным социально-экономическим регионом.