Scientific journal
Modern high technologies
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 0,940

METHODS FOR UTILIZING SOLID FUEL ROCKETS

Shartdinov A.S. 1 Elizarev A.N. 1 Aksenov S.G. 1 Epimakhov N.L. 1
1 Ufa State Aviation Technical University
1528 KB
The article analyzes the technological and environmental problems of disposal of removal of solid fuel missiles. The advantages and disadvantages of such methods of utilization of solid rocket fuel are considered as: combustion or explosion of fuel, extraction of solid rocket fuel from solid fuel rocket engines by machining, by cryogenic filler destruction and hydrodynamic flushing method and subsequent processing or storage. An innovative safe and economically substantiated method of utilization of solid fuels of rockets is proposed by using the equipment complex using the autothermal gasification process for the production of synthesis gas NPP «Synthesis». The possibility of re-using materials used to make missiles makes the disposal of ICBMs more promising from an economic point of view. The article searches for a potential method for solving the problem of an environmentally friendly method and technology of disposal of decommissioned intercontinental ballistic missiles with solid fuel engines by converting them into useful products, minimizing the environmental damage caused by disposal and long-term storage. The choice of the method for elimination of solid propellants and their main advantages are considered. Thanks to the development of holistic solutions that can make the process of disposal of solid propellants the most effective, economically profitable and environmentally friendly, the necessary conditions are created for the transition of the country’s existence to a clean future.
utilization of solid-propellant rockets
utilization of rocket fuel
thermal utilization
environmentally friendly utilization
reprocessing of rocket components
economically feasible utilization
utilization of solid fuel rocketry by gasification
NPP Sintez

Ракетные двигатели, использующие твердое топливо, широко применяются в индустрии коммерческих космических полетов для питания ракет-носителей орбитального класса и небольших исследовательских ракет [1]. Тяга и удельный импульс, развиваемые ракетным двигателем, являются важными характеристиками ракетной двигательной установки и определяют общие характеристики ракеты. На эти свойства сильно влияет скорость горения твердого топлива. Одним из многих методов повышения скорости горения твердого топлива является добавление металлических порошков в матрицу окислителя топлива. Однако эти добавки приводят к выбросу оксидов металлов в атмосферу и вызывают значительное загрязнение окружающей среды [2].

Современное мировое сообщество тратит значительные средства на хранение, обслуживание и утилизацию непригодных для дальнейшего использования или снятых с вооружения взрывопожароопасных изделий и материалов, начиная от обычных снарядов и заканчивая такими сложными изделиями, как трехступенчатые твердотопливные межконтинентальные баллистические ракеты (МБР) РС-22. МБР с ракетными двигателями твердого топлива (РДТТ) сняты с вооружения, демонтированы и в соответствии с международными соглашениями должны быть уничтожены или утилизированы. Своевременное и полное выполнение указанных соглашений сейчас чрезвычайно актуально для многих стран мира [3].

Утилизация МБР является более перспективной с экономической точки зрения. Она дает возможность повторно использовать отдельные узлы и агрегаты, а также дорогое сырье и материалы, израсходованные на изготовление ракет. Основные трудности, возникающие при утилизации МБР, связаны, в первую очередь, с утилизацией их двигателей, которые оснащены взрывопожароопасными веществами с ограниченными сроками годности последних.

Цель исследования – проведение анализа потенциального метода решения проблемы экологически безопасного метода и технологии утилизации снятых с вооружения межконтинентальных баллистических ракет с двигателями твердого топлива с помощью их превращения в полезные продукты при минимизации наносимого от утилизации и длительного хранения вреда окружающей среде.

Металлические компоненты отделенного ракетного двигателя могут быть восстановлены для переработки после того, как они были повреждены, в целях дальнейшего использования в ракетном двигателе. Кроме того, металлолом должен быть сертифицирован как безопасный для публичного выпуска и переработки [4]. Отделение топлива, воспламенителя и других энергетических компонентов ракетного двигателя от корпуса и электроники упростило бы извлечение металлолома из этих компонентов. Тем не менее, регенерированный металл, возможно, придется подвергнуть термической или химической обработке, чтобы гарантировать, что энергетические остатки будут уничтожены до того, как материалы могут быть отправлены на переработку [5]. Классификация способов ликвидации зарядов СРТТ представлена на рис. 1.

missing image file

Рис. 1. Классификация способов ликвидации зарядов CPTT [6]

Было предложено множество технологий для утилизации обычных твердотопливных ракетных двигателей. Технологии можно разделить на термические и химические. В настоящее время апробированы и в разной степени используются четыре метода извлечения или уничтожения наполнителей РДТТ: сжигание или взрыв топлива, извлечение твердого ракетного топлива (ТРТ) из РДТТ путем механической обработки, путем криогенного разрушения наполнителя и методом гидродинамического вымывания и последующая его переработка или хранение, разрушение РДТТ (сегментация, криогенное, химическое разрушение) [7].

Выбор метода ликвидации РДТТ зависит, прежде всего, от свойств ТРТ, его химической и термической стойкости, детонационной способности, чувствительности к удару, трению и других энергетических импульсов, инициирующих взрывные преобразования. Так, например, химические технологии обычно требуют предварительной обработки, при которой пропеллент превращается в удобную форму (например, раствор, порошок или суспензию). Этот процесс увеличивает обращение с энергетическими материалами и несет сопутствующие риски. Кроме того, при использовании любого из перечисленных методов для ликвидации МБР РС-22 необходимо решить ряд вопросов, связанных, в первую очередь, с техническими, экологическими и экономическими аспектами [8].

Экологические аспекты при ликвидации РДТТ обусловлены необходимостью обязательного соблюдения законодательных требований в области охраны окружающей среды и обеспечения санитарно-эпидемиологического благополучия населения. Существенные изменения взрывных характеристик ТРТ, в частности чувствительности к ударам, трению и электростатическим разрядам, в основном, связаны с длительными сверхнормативными сроками и нерегламентированными по температуре и влажности условиями хранения РДТТ в период между их снятием с вооружения и началом тестирования ТРТ. В дальнейшем, при хранении РДТТ в регламентированных по температуре и влажности условиях, взрывные характеристики ТРТ остаются практически неизменными, однако физико-механические свойства топлива снижаются ниже уровней, предусмотренных требованиями технических условий. Продолжительное хранение РДТТ ведет к существенному повышению уровня экологической опасности, обусловленной накоплением взрывоопасных изделий и материалов [7].

В то же время процесс утилизации РДТТ, содержащих большое количество токсичного и взрывопожароопасного топлива, является потенциально опасным и может привести к загрязнению значительных территорий как в месте размещения объекта утилизации, так и в месте последующего хранения или использования продуктов утилизации. Наиболее интенсивно исследование утилизации РДТТ ведут ученые и ведущие специалисты научных учреждений и промышленных предприятий США и РФ: компании Thiokol (США), Lockheed Martin (США), General Atomics (США), ЦНИИХМ (Москва), ИХФ РАН (Москва) и др. (рис. 2).

missing image file

Рис. 2. Принципиальная технологическая схема сжигания зарядов по технологии фирмы Lockheed Martin [6]

Среди известных методов утилизации РДТТ наиболее простыми и, на первый взгляд, малозатратными являются методы открытого сжигания и взрывания топлива. При утилизации РДТТ первым методом выброс токсичных продуктов сгорания, которые создаются при недостатке кислорода, происходит за короткий период времени – от 60 до 310 с. При этом температура продуктов сгорания, вытекающих из снаряженных корпусов двигателей (СКД), колеблется от 1500 °С до 2200 °С с постепенным уменьшением до 300–400 °С. При таких условиях в продуктах сгорания происходят сложные химические превращения с образованием активных радикалов и веществ сложного строения (таких как хлорид водорода, полициклические и гетероциклические вещества, нитрозили, окислы азота и др.).

Ликвидация РДТТ путем прямого сжигания или взрывания топлива имеет ряд существенных недостатков, связанных с высокой вероятностью аварий в процессе ликвидации дефектных зарядов и зарядов со сверхнормативным сроком хранения, которые могут привести к существенному загрязнению окружающей среды газообразными, жидкими и твердыми отходами. Ликвидация снаряженных корпусов двигателей МБР РС-22 методами открытого сжигания или взрывания приводит к существенному сверхнормативному загрязнению атмосферного воздуха над территорией, удаленной от объекта ликвидации топлива на расстояние 50–100 км, с учетом преимущественного направления и силы ветров и загрязнения почвы продуктами сгорания и для современных экологических условий является неприемлемой [6].

Согласно требованиям природоохранного законодательства, категорически запрещается сжигание химических веществ и отходов открытым способом, без использования специальных установок с очисткой выбросов от продуктов сгорания. Поэтому ликвидация ТРТ методом сжигания может осуществляться только при обязательном использовании специальных установок, обеспечивающих очистку выбросов от продуктов сгорания до нормативов экологической безопасности. Наличие таких установок снижает воздействие опасных летучих примесей, полученных при сжигании, на окружающую среду, но технологии сжигания по-прежнему недостаточно отработаны. Кроме того, процесс сжигания экономически неэффективен, отмечены большие затраты из-за необходимости дефектоскопии РДТТ, применения отдельных технологий для ликвидации дефектных двигателей, строительства и полигонов по очистке и захоронению отходов [9].

Открытый взрыв имеет несколько преимуществ. Работа с энергоемкими предметами сведена к минимуму, и это снижает риск неожиданного инициирования и причинения вреда персоналу или объектам. Ликвидация СКД методом взрывания происходит в течение 0,001–0,005 с в случае, если заряд ТРТ способен детонировать без дефлограции. Топливо, которое используется в двигателях ракет, может быть трудно полностью взорвать, а неполная детонация иногда приводит к распределению непрореагировавшей энергии. Для зарядов ТРТ, детонирующих неустойчиво, необходимо привлечение больших дополнительных масс взрывоопасного вещества. Также при взрывании ТРТ в СКД возможен разброс фрагментов заряда ТРТ и корпуса по прилегающей территории. Это может произойти по причине неустойчивой детонации в заряде ТРТ [10]. Потоки вторичных отходов ограничиваются непрореагировавшими материалами, в основном металлическими компонентами взорвавшихся твердотопливных ракетных двигателей. При этом эти фрагменты будут догорать на большой территории с образованием вторичных источников загрязнения. После догорания остатки таких фрагментов необходимо собрать и отправить на дополнительную утилизацию или захоронение [6].

В целом выполненная оценка методов открытого сжигания и подрыва показала, что их использование для утилизации РДТТ МБР РС-22 приводит к существенному сверхнормативному загрязнению атмосферного воздуха и почвы.

Извлечение ТРТ из РДТТ путем механической обработки имеет ряд недостатков, которые заключаются в повышенной пожаро- и взрывоопасности процесса, необходимости проведения дополнительной операции – разрезания корпусов на сегменты и освоения дополнительного технологического процесса по окончательной доочистке корпусов. В то же время эта технология обеспечивает наибольшую экономичность процесса удаления, экологически чище, отсутствуют выбросы в окружающую среду [11].

Технология извлечения ТРТ из двигателей путем криогенной вымывки недостаточно отработана. К недостаткам этого процесса следует отнести необходимость проведения дополнительной операции разрезания корпусов на сегменты перед началом процесса извлечения, а также освоения дополнительного технологического процесса по окончательной очистке корпусов от остатков ТРТ [12, 13].

При базовом гидролизе энергетические отходы добавляются в воду при умеренной температуре (90–150 °C) и высоком давлении с сильным основанием (pH > 12). Органические компоненты энергетических отходов превращаются в водорастворимые неэнергетические материалы. Скорость подачи необходимо контролировать, чтобы предотвратить бурную экзотермическую реакцию, т.е. возгорание или детонацию пороха. Чтобы контролировать скорость подачи и гарантировать эффективную и тщательную реакцию, обычно необходимо добавлять пропеллент в щелочной раствор в виде суспензии. Ключевым преимуществом этой технологии является то, что энергетические отходы превращаются в водорастворимые неэнергетические продукты, но полученный раствор по-прежнему опасен и требует дальнейшей обработки [1, 7].

Чаще всего при утилизации РДТТ применяется метод гидродинамического вымывания ТРТ с последующей утилизацией изъятого ТРТ в коммерческие взрывоопасные вещества (рис. 3).

missing image file

Рис. 3. Технологическая схема гидроразмыва заряда СРТТ, предлагаемая фирмой Thiokol Chemical [6]

Метод гидродинамического вымывания успешно применяется для утилизации МБР, имеющих физико-механические характеристики, близкие к характеристикам топлива, использованного в МБР РС-22. Таким методом перерабатывались двигатели с превышенными гарантийными сроками хранения, имеющие аномалии в заряде ТРТ, а также двигатели, которые не подлежали транспортировке и не могли быть утилизированными другими методами. Такая технология апробирована и длительное время применяется в США. Недостатками этой технологии являются: высокая энергоемкость метода, наличие значительных объемов загрязненной жидкости, которая требует очистки, сложность процесса последующего извлечения топлива. В то же время этот метод является более безопасным по сравнению с предыдущими, однако наличие в ТРТ МБР РС-22 значительного количества водорастворимых окислителей, в состав которых входит хлор, обусловливает необходимость существенной доработки этого метода и решения вопроса очистки больших объемов воды или извлечения из нее водорастворимых компонентов топлива [14]. Кроме того, опыт США, накопленный в результате ведения работ по утилизации твердотопливных ракет, может быть использован в РФ не в полной мере из-за существенных различий свойств топлива, используемых в РДТТ производства США и РФ [15].

Эффективность гидрокавитационного разрушения зарядов может быть оценена по величине удельной энергии разрушения Eуд, которая зависит как от прочностных свойств материала, так и от совершенства способа превращения энергии кавитирующей струи в работу по разрушению материала на фрагменты, причем, чем меньше величина фрагментов (т.е. больше удельные поверхности фрагментов), тем выше степень реализации энергии натекающей струи. Полученные результаты сравнения показали, что эффективность гидрокавитационного разрушения выше эффективности при большинстве известных способов по разрушению зарядов СРТТ [6] (таблица).

Удельные энергии удаления СРТТ [16]

Разработчик

Способ удаления СРТТ

Удельная энергия удаления, Еуд, ГДж/м3

Thiokol Chemical (США)

Гидрорезка СРТТ крупными фрагментами

6,0–21,6

VVSSC (Индия)

2,7–3,0

НИИ ПМ (Россия)

3,0–3,2

Tracor Hydronautics (США)

Вымывание ВВ в виде пульпы

2,4–2,5

Tracor Hydronautics (США)

Вымывание ВВ кавитирующими струями

1,9–2,1

UTC (США)

Комбинированная резка СРТТ

2,8–4,0

Гидрокавитационный способ

Вымывание СРТТ кавитирующими струями

1,5–2,7

Изъятые с РДТТ наполнители являются высокоэнергетическими веществами, склонными к взрывному превращению, и независимо от способа извлечения практически повсеместно используются для получения продуктов, необходимых при производстве ТРТ для новых образцов вооружения, перерабатываются в коммерческие взрывоопасные вещества или используются как высокоэнергетические компоненты таких веществ [5, 17]. В мире, в том числе и в России, накоплен определенный опыт утилизации боеприпасов и других изделий из взрывоопасных веществ. Однако, учитывая особенности РДТТ МБР РС-22 (габариты, вес, форма), а также свойства ТРТ, наличие в его составе перхлората аммония, существующие методы и технологические линии не могут быть использованы при утилизации РДТТ МБР РС-22. Все схемы имеют свои преимущества и недостатки как в конструктивно-технологическом, так и в эксплуатационном отношении. Все это обусловливает актуальность научной проблемы, заключающейся в разработке и обосновании экологически безопасного метода и технологии утилизации снятых с вооружения межконтинентальных баллистических ракет с двигателями твердого топлива. Требуются новые методы утилизации, преобразующие энергетические материалы в безвредные биопродукты без загрязнения окружающей среды [7, 18].

В некоторых случаях возможно получение материалов для переработки и установки в новое оружие или для альтернативного гражданского использования [19]. Утилизация РДТТ, удовлетворяющая гражданские нужды, является наиболее предпочтительной, так как работает на благо общества и часто выполняет задачи, которые должны быть решены тем или иным способом. Одним из примеров такого применения может выступать печь-крематор для сжигания биологических отходов. На рис. 4 представлена схема крематора с использованием твердого топлива для воспламенения биологических отходов. Это альтернативный способ применения ТТ – в качестве воспламенения биологических отходов [20].

missing image file

Рис. 4. Схема крематора: 1 – корпус крематора, 2 – ТЗП, 3 – труба, 4 – крышка, 5 – крепление крематора, 6 – ножки, 7 – воспламенитель, 8 – биологические отходы

Приемлемый способ ликвидации и утилизации РДТТ МБР ракет PC-22 может основываться на прорывной технологии. Судя по последним достижениям и открытиям в химической, физико-химической и микробиологической областях исследования, а также по технологическим достижениям, такой способ возможен [21, 22].

Если исходить из приоритета экологической и технологической безопасности, новый способ может представлять собой развитие химического метода с переходом на микробиологический уровень или сочетание микробиологической технологии с новейшими химическими и физико-химическими технологиями. В связи с этим перспективным является принцип утилизации ТРТ с помощью комплекса газификации производства ООО «НПП «Синтез»». Предприятием ООО «НПП «Синтез»» был разработан, изготовлен, испытан, запатентован и сертифицирован комплекс оборудования с использованием автотермического процесса газификации – переработки органически содержащих продуктов при окислении их недостатком кислорода воздуха, имеющий в соответствии с ТУ 3116-001-74150904-2007 различные мощности и модификации (рис. 5) [23]. Синтезированный газ подвергается оригинальной очистке от нежелательных механических примесей, смоляного и водяного конденсата без применения сменных фильтров, происходит выработка теплоносителя в виде горячей воды.

missing image file

Рис. 5. 3D графика КЭЭГ – 500-02

Следует отметить тот факт, что в конструкцию комплекса заложен способ обратной газификации, при котором происходит разложение токсинов, таких как пестициды, диоксины, фенолы, формальдегиды, которые вновь не восстанавливаются, как это происходит в мусоросжигательных заводах, реакторах прямой, горизонтальной и вихревой газификации, пиролизных печах, а переходят в газовую составляющую, так как по технологии газ подвергается закалке (резкому охлаждению), проскакивая температурный рубеж восстановления токсинов [24]. Перспективным, с нашей точки зрения, является способ переработки РДТТ с получением синтез-газа для производства тепловой и электрической энергии, жидких углеводородов, что снизит вред окружающей среде, путем переработки РДТТ более усовершенствованным способом. Стоимость вырабатываемого синтез-газа в этой модификации комплекса равна от 0 до 0,2 руб. за 1 м³ в зависимости от вида топлива, степени его подготовки и мощности комплекса. Эффективность перевода твердого топлива в синтетический газ, а затем использование его в горелках пароводяных котлов от 3,35 до 6 раз выше, чем простое сжигание твердого топлива в твердотопливных пароводяных котлах [3].

Заключение

Таким образом, всем рассмотренным возможным методам утилизации РДТТ свойственны как определенные преимущества, так и недостатки. Основным условием применения этих методов является обеспечение технической и экологической безопасности при утилизации РДТТ на территории РФ. Текущие усилия в этой области побуждают ученых, промышленность и правительства прилагать значительные усилия при разработке целостных решений, способных сделать процесс утилизации РДТТ наиболее эффективным, экономически выгодным и экологически безопасным с целью перехода условий существования страны к чистому будущему. В связи с этим перспективным является принцип утилизации ТРТ с помощью комплекса газификации производства ООО «НПП «Синтез»».