Scientific journal
Modern high technologies
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 0,940

MODEL FOR PARAMETRIC OPTIMIZATION OF CUTTING OPERATIONS BASED ON THE HIGHEST ENERGY EFFICIENCY CRITERION

Karpov A.V. 1
1 The Murom Institute (branch) of the Federal state budgetary educational institution of higher education «The Vladimir State University named after Alexander and Nikolay Stoletovs»
This article continues the cycle of the author’s works, in which a dimensionless energy criterion for the efficiency of chip formation is proposed and studied. The new criterion can be applied to create or improve cutting processes in automated machine-building industries. The proposed indicator represents the energy efficiency of chip formation, since it relates the specific energy intensity of the workpiece material, which characterizes its workability, to the total specific energy intensity of cutting, determined by processing conditions (tool parameters, size of the cut layer, cutting parameters). A significant influence on the value of the energy efficiency indicator is provided by the power developed in the chip formation zone, as well as the regularity of its change over time, due to the geometric and kinematic features of a particular type of processing. The factor of power instability is taken into account using typical schemes of its periodic change over time and corresponding approximation coefficients, which allow calculating the cutting power consumption for each cycle of power change. On the example of longitudinal and transverse turning, cylindrical milling and cutting of blanks with circular mills, theoretical and empirical expressions are obtained for calculating the value of the proposed energy efficiency indicator through unmanaged and controlled cutting parameters. The use of a new energy efficiency indicator as an optimization criterion allowed us to develop a generalized model of parametric optimization of machining as a set of input, control and output technological parameters for each working stroke of the tool.
optimization
optimization criterion
turning
milling
cutting parameters
specific energy intensity
energy efficiency of chip formation

С использованием термодинамических закономерностей пластической деформации и разрушения твёрдых материалов в [1] нами предложен и проанализирован безразмерный показатель К, позволяющий количественно оценивать энергетическую эффективность рабочего хода режущего инструмента – базового элемента технологического перехода, технологической операции, технологического процесса обработки заготовок деталей машин резанием. Показатель К записан в виде отношения удельной энергоёмкости обрабатываемого материала Δw, Дж/мм3, к удельной энергоёмкости (удельной работе) резания е, Дж/мм3, и выражает, таким образом, энергетический КПД стружкообразования:

karp01.wmf (1)

Удельная энергоёмкость материала Δw обобщённо характеризует его обрабатываемость [2] и определяется комплексом физико-механических и теплофизических свойств. Значение Δw было предложено определять в зависимости от механизма разрушения сплошности срезаемого слоя (пластическое, квазихрупкое, хрупкое), рода превалирующих напряжений в зоне резания, типа стружки и назначения технологического воздействия (черновое, получистовое, чистовое).

Удельная работа резания е характеризует конкретные условия, в которых осуществляется стружкообразование, и, помимо свойств материала, зависит от вида обработки, параметров срезаемого слоя, материала и геометрии режущей части инструмента, элементов режима резания и других технологических факторов (управляемых и неуправляемых). В общем случае величина е соответствует отношению работы Арез, совершённой режущим инструментом за время рабочего хода То, к объёму V срезаемого слоя, превращенного в стружку:

karp02.wmf (2)

где N – мощность, развиваемая в зоне резания; П – производительность стружкообразования (минутный съём стружки).

Достоинство показателя удельной энергоёмкости состоит в наличии его устойчивой корреляции с большим количеством неуправляемых и управляемых параметров, описывающих рабочий ход инструмента. За рубежом при аттестации производственных процессов часто используют схожий критерий – съём металла на единицу мощности [3].

Выбор, назначение или расчёт величины управляемых технологических параметров (при заданных значениях неуправляемых) есть актуальная производственная задача при планировании, осуществлении и совершенствовании механической обработки заготовок на машиностроительных предприятиях. Для её решения могут и должны применяться оптимизационные алгоритмы и методики [4].

Цель исследования: разработать методику оптимизации технологических процессов обработки резанием на иерархическом уровне «рабочий ход» с использованием критерия наибольшей энергетической эффективности стружкообразования К > 1 (на примере операций точения и фрезерования).

Материалы и методы исследования

Определение показателя энергетической эффективности стружкообразования с учётом нестабильности мощности резания во время рабочего хода

Встречающееся в известных исследованиях [3] выражение (2) позволяет рассчитать величину удельной работы резания е при условии постоянства мощности N и производительности П в течение времени рабочего хода инструмента То, что справедливо лишь для стационарного характера обработки и на практике встречается редко. В общем случае будем исходить из того, что значение мощности N при различных видах и параметрах обработки может либо оставаться условно постоянным (N = const), либо однократно или периодически меняться по некоторой функциональной зависимости N = N(T).

Колебания мощности резания обусловлены, в первую очередь, закономерными изменениями геометрических и кинематических характеристик обработки во время работы инструмента. Например, при поперечном точении и отрезке резцом меняются мгновенные значения диаметра обработанной поверхности и скорости резания; при фрезеровании является переменной толщина срезаемого слоя, приходящаяся на зуб фрезы; при разрезании круглого проката дисковой пилой меняется периметр торцового перекрытия инструмента с заготовкой и число зубьев пилы, участвующих в резании. Кроме объективных причин, вызванных геометрией и кинематикой обработки, на непостоянство мощности резания влияют и случайные факторы: неравномерность физико-механических свойств (в первую очередь, поверхностной твёрдости) материала по длине срезаемого слоя; колебания чернового припуска на отливках и поковках; погрешность установки и закрепления инструмента и т.п. В силу тех же объективных и субъективных причин не остаётся постоянной и величина производительности (минутного съёма стружки) П.

Если обозначить через nц число повторяющихся циклов изменения мощности N = N(T) за время рабочего хода То, и через Ац – работу стружкообразования за время Тц одного цикла изменения мощности, то выражения (2) и (1) приобретают развёрнутый вид:

karp03.wmf (3)

karp04.wmf (4)

Суммарное время рабочего хода То может быть разбито на циклы изменения мощности в зоне резания: Tо = nц·Тц. Подынтегральное выражение в (3), (4) представляет собой работу резания Ац за каждый такой цикл. Для его раскрытия многообразие реальных закономерностей изменения мощности N = N(T), присущих различным видам и условиям обработки резанием, нами приведено к четырём наиболее показательным (типовым) схемам [2]:

– типовая схема 1: стационарный режим, при котором мощность резания остаётся условно постоянной в течение всего времени рабочего хода инструмента (N = Nmax = const);

– типовая схема 2: мощность в пределах цикла своего изменения постепенно возрастает до максимального значения Nmax, а затем резко убывает;

– типовая схема 3: мощность в пределах цикла своего изменения резко возрастает до Nmax, а затем постепенно убывает;

– типовая схема 4: мощность в пределах цикла своего изменения меняется по параболическому закону, постепенно возрастая от нуля до Nmax, а затем постепенно убывая до нуля.

Первая типовая схема свойственна наружному и внутреннему продольному точению, сверлению, протягиванию, продольному строганию и другим операциям, при которых колебания значений геометрических и кинематических параметров и, как следствие, мощности резания не значительны. Вторая и третья схемы встречаются соответственно при встречном и попутном фрезеровании применительно к каждому зубу фрезы, а также при поперечном точении и подрезке торцовых поверхностей заготовок резцами. Четвёртая схема присуща, в частности, операции разрезания круглого проката дисковой пилой на фрезерно-отрезных полуавтоматах, а также при обработке плоскостей и пазов на поперечно-строгальных станках с кулисным приводом.

Каждую типовую схему будем характеризовать коэффициентом аппроксимации kN, величина которого определяется таким образом, чтобы произведение kN·Nmax·Тц численно соответствовало площади под кривой N = N(T) рассматриваемой типовой схемы, т.е. величине работы резания Ац за один цикл изменения мощности. Для представленных выше типовых схем 1; 2 и 3; 4 значение коэффициента аппроксимации соответственно равно kN = 1; 1/2; 2/3.

Введение типовых схем N = N(T) и коэффициентов их аппроксимации kN позволяет раскрыть подынтегральное выражение в (3), (4) и определять коэффициент энергетической эффективности стружкообразования следующим образом:

karp05a.wmf

karp05b.wmf (5)

Следует отметить, что значение Nmax можно достаточно точно находить аналитически или эмпирически, а также измерять и контролировать непосредственно во время каждого рабочего хода при осуществлении технологического процесса обработки заготовки на металлорежущем станке.

Теоретико-эмпирические выражения показателя энергетической эффективности при точении и фрезеровании

На основе различных методик аналитического расчёта удельной энергоёмкости материалов [1], касательных и нормальных напряжений в зоне резания [3; 5], зависимостей силовых показателей (тангенциальной силы, крутящего момента, мощности) от параметров инструмента, срезаемого слоя и элементов режима резания [6] были получены теоретико-эмпирические выражения показателя К для операций получистового точения и фрезерования некоторых групп конструкционных материалов, расчёты по которым демонстрируют хорошее совпадение с экспериментальными результатами (табл. 1, 2).

Наибольшее влияние на величину показателя К оказывают: 1) физико-механические свойства обрабатываемого материала (временное сопротивление σв, МПа, модуль упругости Е, МПа, твёрдость НВ, относительное равномерное поперечное сужение ψв, относительное удлинение δ); 2) вид инструментального материала и геометрия режущего лезвия (коэффициенты kφp, kγp, krp [6]); 3) диаметр заготовки D (при точении), dзаг (при разрезании) или инструмента D (при фрезеровании), мм; 4) подача на оборот s, мм/об (при точении) или минутная подача sм, мм/мин (при фрезеровании); 5) глубина резания t, мм; 6) частота вращения шпинделя n, мин-1; 7) число зубьев фрезы z; 8) ширина фрезерования В, мм.

Таблица 1

Теоретико-эмпирические выражения показателя К при точении

Операция

(вид обработки резанием)

Инструментальный материал

Обрабатываемый материал

Расчётное выражение показателя К

Точение

продольное

Твёрдый сплав

Sandvik GC4225

Конструкционная сталь (ISO-P,

СМС 01.1 – 01.3)

karp06.wmf

Твёрдый сплав

ВК6

Серый

чугун (ISO-K,

CMC 08.1)

karp07.wmf

Ковкий

чугун (ISO-K,

CMC 07.2)

karp08.wmf

Точение

поперечное

(торцовое)

Твёрдый

сплав

Sandvik GC4225

Конструкционная сталь (ISO-P,

СМС 01.1 – 01.3)

karp09.wmf

Твёрдый сплав

ВК6

Серый

чугун (ISO-K,

CMC 08.1)

karp10.wmf

Ковкий

чугун (ISO-K,

CMC 07.2)

karp11.wmf

 

Таблица 2

Теоретико-эмпирические выражения показателя К при фрезеровании

Операция

(вид обработки резанием)

Инструментальный материал

Обрабатываемый материал

Расчётное выражение показателя К

Фрезерование

цилиндрическое

Быстрорежущая

сталь

Р6М5

Конструкционная сталь (ISO-P,

СМС 01.1 – 01.2)

karp12.wmf

Серый

чугун (ISO-K,

CMC 08.1 – 08.2)

karp13.wmf

Ковкий

чугун (ISO-K,

CMC 07.2)

karp14.wmf

Твёрдый сплав

Т5К10

Конструкционная сталь (ISO-P,

СМС 01.1 – 01.2)

karp15.wmf

Твёрдый сплав

ВК8

Серый

чугун (ISO-K,

CMC 08.1 – 08.2)

karp16.wmf

Разрезание круглого проката дисковой пилой

Быстрорежущая

сталь Р9К5

Конструкционная сталь (ISO-P,

СМС 01.2)

karp17.wmf

Твёрдый

сплав

Т5К10

Конструкционная сталь (ISO-P,

СМС 01.2)

karp18.wmf

 

Результаты исследования и их обсуждение

Выражения показателя энергетической эффективности К, полученные на примере точения, цилиндрического фрезерования и разрезания заготовок, показали наличие устойчивых функциональных связей этого показателя с векторами неуправляемых и управляемых технологических факторов, которые в конкретных производственных условиях могут быть сформулированы или уточнены для соответствующей операции, перехода, рабочего хода. Путём приведения выражений, содержащихся в табл. 1, 2 (или аналогичных выражений для других видов обработки), к целевой функции вида К > 1 можно построить модель параметрической оптимизации отдельного рабочего хода, технологического перехода, технологической операции и всего технологического процесса по критерию наибольшей энергетической эффективности.

Модель параметрической оптимизации операций точения и фрезерования по критерию К > 1 представлена на рисунке как комплекс взаимосвязанных параметров трёх различных классов: входных, ограничивающих и выходных.

Ко входным (задаваемым, неуправляемым) параметрам отнесены: 1) физико-механические свойства обрабатываемого материала, позволяющие рассчитать его удельную энергоемкость Δw [1]: временное сопротивление σв, твёрдость НВ, относительное удлинение δ, относительное равномерное поперечное сужение ψв, модуль упругости Е, удельная теплоёмкость Ср, плотность ρ, температура плавления TS; 2) способ обработки, тип инструментального материала; 3) условия обработки: глубина резания t, размеры заготовки (L – длина образующей, l – длина направляющей), способ закрепления заготовки или инструмента, геометрические параметры приспособлений.

Ограничивающими (управляющими) параметрами являются: 1) требования к обработанной поверхности (допуск на размер [Δ], шероховатость Ra); 3) требуемый период стойкости инструмента [T]; 4) мощность станка [N]; 5) допустимый крутящий момент на шпинделе [Мкр]; 6) максимально допустимое основное время технологического перехода [τосн]. Значения ограничивающих параметров устанавливаются в конкретных производственных условиях по рабочим чертежам детали, операционным эскизам, паспортным данным оборудования, такту выпуска изделий (серийности производства).

Выходные (оптимизированные) параметры включают в себя оптимальные значения геометрических характеристик инструмента (D, z, γ, α, r, φ, φ1, ω, B, H)opt и режимов резания (nopt, vopt, sopt), а также соответствующие им значения податливости заготовки или инструмента Δ, шероховатости Ra, стойкости T, мощности N, крутящего момента Mкр, основного времени τосн, удельной работы резания e = emin и показателя энергетической эффективности K = Kmax.

karpov1.tif

Модель параметрической оптимизации операций обработки резанием по критерию К > 1

Выводы

1. Показатель энергетической эффективности стружкообразования К [1; 2], связывающий обрабатываемость материала с условиями его обработки, может рассматриваться как комплексная энергетическая характеристика и критерий оптимизации управляемых параметров резания на базовом иерархическом уровне «рабочий ход», лежащем в основе любого технологического перехода, технологической операции и всего технологического процесса изготовления конкретной детали в условиях машиностроительного предприятия.

2. Для операций точения и фрезерования различных конструкционных материалов получены теоретико-эмпирические выражения, связывающие критерий К с управляемыми (оптимизируемыми) и неуправляемыми (задаваемыми) технологическими параметрами.

3. Предложена обобщённая модель параметрической оптимизации по условию К > 1 как комплекс входных, ограничивающих и выходных параметров рабочего хода. Чем больше значение показателя К, тем эффективнее технологический вариант обработки (сочетание инструментального материала, параметров режущей части инструмента, режима резания) с позиций предложенного энергетического критерия.