Scientific journal
Modern high technologies
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 1,021

FORMATION OF COMPETENCES ON THE BASIS OF INTERDISCIPLINARY APPROACH IN CASE OF STUDY OF NATURAL-SCIENCE DISCIPLINES

Tarasova I.M. 1
1 Russian customs academy Vladivostok branch
В статье рассмотрены особенности и тенденции в развитии российского образования, отличительной чертой которых является формирование профессиональных компетенций выпускника. Проанализированы основные задачи компетентностного подхода на основе междисциплинарных связей. Обосновывается целесообразность междисциплинарных связей, описаны принципы и условия, которые необходимы для формирования научных понятий на междисциплинарной основе. Рассмотрены этапы и приведён пример по формированию элементов компетенций. Предложена классификация по видам междисциплинарных связей при изучении естественнонаучных дисциплин для конкретной специальности. Определена функция обучения, в которой выражена результативность и целенаправленность в формировании личности студента как основная характеристика учебно-воспитательного процесса. Сформулированы общие принципы и рассмотрена специфика преподавания естественнонаучных дисциплин у студентов на основе структурирования учебного материала. Проанализирован ряд положений по организации деятельности студентов по овладению методами математического моделирования, наилучшие результаты достигаются при классификации прикладных, междисциплинарных учебно-познавательных или компетентностно-ориентированных задач.
The article deals with the features and tendencies in development of Russian education where formation of professional competences of a graduate is the distinctive feature. The main objectives of competence-based approach on the basis of interdisciplinary communications are analyzed. Feasibility of interdisciplinary communications is proved, the principles and conditions promoting formation of scientific concepts on an interdisciplinary basis are described. Stages are considered and the example on formation of elements of competences is given. The author offers classification by types of interdisciplinary communications in case of a study of natural-science disciplines for a certain specialty. Training function is defined as the qualitative characteristic of teaching and educational process where effectiveness in formation of the identity of the student is expressed. The general principles are formulated and specifics of teaching natural-science disciplines for students on the basis of structuring a training material are considered. Some of provisions on the organization of activities of students for mastering methods of mathematical simulation are analyzed; the best results can be in case of classification of application-oriented, interdisciplinary educational and cognitive or competence-based focused tasks.
interdisciplinary communications
mathematician
mathematical methods and models
mathematical modeling

На современном этапе развития общества, связанного с информационными технологиями, для высшего образования определяют системно-ориентированный подход образовательных целей по подготовке квалифицированных специалистов, готовых к стремительным и неизбежным переменам в общественно-информационном развитии. Современные выпускники высших образовательных учреждений должны отличаться: способностью принимать решения в различных профессиональных ситуациях, в том числе и случайных; осваивать информационно-коммуникационные технологии и использовать их в своей профессиональной деятельности; способностью стремиться к самообразованию и развитию профессиональных качеств. Обеспечение рынка труда профессиональными специалистами, обладающими вышеописанными качествами, на сегодняшний день является одной из задач высшего образования.

В последнее десятилетние для высшего образования России сформировалась необходимость в привлечении работодателей как основной цели, образовательной системы. В нормативно-правовой документации, регламентирующей образовательную деятельность, научно-педагогических исследованиях в качестве одной из задач предлагается формирование компетенций у студентов.

Действующие Федеральные государственные образовательные стандарты высшего образования определяют, что в основе образовательного процесса в высшей школе лежит компетентностный подход к образованию, обеспечивающий взаимосвязь фундаментальной и прикладной подготовки студентов, ориентирующий выпускников высших учебных учреждений на формирование компетенций, необходимых в дальнейшей профессиональной деятельности. В высших учебных учреждениях требуется обновление в проектировании содержания, новых форм, интерактивных средств и методов обучения с использованием компетентностного подхода.

«Компетенция представляет собой интегративное понятие и выражает способность применять элементы знаний и умений в самых различных ситуациях, способность делать что-либо компетентно, предвидя или прогнозируя результат этой деятельности. Для этого в структуре учебного процесса необходимо отразить сложность и многообразие профессионально значимых объектов и ситуаций, их принципиальную несводимость к сумме конкретных отдельных предметных сущностей» [1]. Сложившаяся дисциплинарная и предметная система обучения студентов формирует некоторые противоречия между разрозненными по учебным дисциплинам (знания, умения, владения) и противоречия между сформированностью профессиональных компетенций как основной характеристикой качества обучения и средствами её формирования в рамках конкретных учебных дисциплин.

За счёт формирования и усиления в учебном процессе межпредметных или междисциплинарных связей могут быть устранены данные противоречия. «Межпредметные связи (МПС) разрешают существующие в предметной системе обучения противоречия между разрозненным усвоением разнопредметных знаний и необходимостью их последующего синтеза и комплексного применения в практике и профессиональной деятельности» [1].

B настоящее время среди педагогического сообщества есть осознание того, что формирование профессиональной компетентности выпускника высшего образовательного учреждения невозможно без осуществления профессионально-направленного обучения, в результате которого формируется профессиональная и социальная компонента будущего специалиста таможенных органов, а также без применения междисциплинарных связей учебных дисциплин.

«Междисциплинарные связи – это взаимная согласованность учебных программ, обусловленная содержанием наук и дидактическими целями. Междисциплинарные связи имеют особое значение при комплексной системе обучения, при которой для образования комплексных тем выделяются связанные с ними элементы (темы, разделы, факты, понятия, законы) из различных отраслей знания. Междисциплинарные связи могут прослеживаться по времени как сопутствующие, предшествующие, последующие, перспективные, повторяющиеся. Направленность на путь переноса знаний, умений и навыков определяет их роль как обеспечивающих или обеспечиваемых, прямых или опосредованных. По своему характеру связи могут быть логическими, философскими, гносеологическими, семиотическими» [2].

Необходимость междисциплинарных связей в обучении студентов особенно очевидна на фоне интеграционных процессов, происходящих на современном этапе информационного общества. Будущий специалист должен уметь комплексно применять и использовать знания различных дисциплин в профессиональной деятельности [3].

Междисциплинарные связи разрешают противоречие между разрозненным усвоением знаний и необходимостью их интеграции, комплексного применения в практике, профессиональной и социальной деятельности человека. Умение комплексного применения знаний, их синтеза, переноса идей и методов из одной науки в другую лежит в основе теоретического подхода к любой деятельности человека в современных условиях. Обучение таким знаниям и умениям, диктуется тенденциями интеграции в науке и практике и решается с помощью междисциплинарных связей [4, 5].

B основе принципа междисциплинарности, как и любого другого принципа обучения, находится свойство всеобщности, которое возможно реализовать к каждой учебной дисциплине. В педагогических и методических исследованиях подтверждается целесообразность его применения.

Определяют следующие педагогические, общедидактические и психологические условия, способствующие формированию научных понятий на междисциплинарной основе [4, 6]: согласованное во времени изучение отдельных учебных дисциплин, при котором каждая из них опирается на предшествующую понятийную базу и готовит обучающихся к успешному усвоению терминов и понятий последующей дисциплины; необходимость обеспечения непрерывности и преемственности в определении и развитии понятий; понятия, являющиеся общими для ряда дисциплин, должны от дисциплины к дисциплине непрерывно развиваться, наполняться новым содержанием, обогащаться новыми связями; единство в интеграции общенаучных понятий; осуществление единого подхода к раскрытию одинаковых классов понятий.

Этапы формирования компетенций ОК-1, ОК-7 у студентов специальности 38.05.02 «Таможенное дело» при изучении дисциплин в семестре приведены в табл. 1 и табл. 2.

Таблица 1

ОК-1 – способность к абстрактному мышлению, анализу, синтезу [7]

Название дисциплины

Семестр

Математика

1 и 2

Концепции современного естествознания

1

Культурология

3

Логика

3

Основы системного анализа

4

Математические методы и модели в управлении

8

Научно-исследовательская работа

9

Таблица 2

ОК-7 – способность использовать основы экономических и математических знаний при оценке эффективности результатов деятельности в различных сферах [7]

Название дисциплины

Семестр

Математика

1 и 2

Основы системного анализа

4

Математические методы и модели в управлении

8

Научно-исследовательская работа

9

Уровень сформированности компетенции по дисциплине (УС (Компетенция (Дисциплина))) можно определить от количества дисциплин (КД).

Например, УС (Компетенция (Дисциплина)) = 1/КД, тогда УС (ОК-1 (Математика)) = 0,14, УС (ОК-7 (Математика)) = 0,25.

Уровень сформированности компетенции ОК-7 у студентов незначительно больше, по сравнению с уровнем сформированности компетенции ОК-1 при изучении вышеперечисленных дисциплин.

Данные дисциплины можно классифицировать по видам междисциплинарных связей: предшествующие – дисциплины, чьи понятия и методы являются базовыми, основными, используются в других дисциплинах; сопутствующие – дисциплины, изучающие то же направление профессиональной деятельности, использующие подобный терминологический и методологический аппарат; последующие – дисциплины, для которых изучаемые понятия и методы будут опорными и использоваться в профессиональной деятельности.

Обучение в высшем образовательном учреждении должно представлять собой целостный или непрерывный воспитательный и учебный процесс, имеющий общую структуру и функции, которые отражают взаимодействие научения и преподавания. Функция обучения – является основной характеристикой воспитательного и учебного процесса, в которой отражена целенаправленность и результативность в формировании личности студента. Междисциплинарные связи помогают в реализации воспитательной, образовательной, и развивающей функции обучения. Они осуществляются во взаимосвязи и взаимно дополняют друг друга.

Проанализируем в данной статье реализацию междисциплинарных связей на примере дисциплин: «Математика», «Математические методы и модели в управлении».

Математика – относится к базовым дисциплинам и на современном этапе обучения сформированные компетенции у студентов специальности 38.05.02 «Таможенное дело» по разделам математики являются основой для решения задач по дисциплине, которая определена в рабочих учебных планах как дисциплина по выбору «Математические методы и модели в управлении».

Определение понятий модель и моделирование в содержании образования, выяснение роли моделирования в стиле познания изменяет отношение к учебной дисциплине, процессу обучения, делает учебную деятельность более осознанной и эффективной.

Математическая подготовка студентов данной специальности включает в себя многоуровневую, поэтапную интеграцию математических знаний, умений и владений, воспринятых в ходе изучения разделов математики, в основе которой должен лежать, прежде всего, принцип математического моделирования процессов, имеющих место в таможенной практике. Преемственность в реализации такой подготовки студентов обеспечивает её фундаментальность, непрерывность и ориентированность на профессиональную деятельность. В современных условиях студенты должны уметь пользоваться методами моделирования: знать, понимать и уметь строить модели объектов, явлений и процессов; исследовать, анализировать и применять их в будущей профессиональной деятельности. Это может быть определено как основа формирования профессиональных компетенций у студентов в области применения метода математического моделирования.

В процессе обучения студентов методам математического моделирования можно определить следующие этапы: определяющий (постановка задачи) – сбор и накопление материала для построения моделей; последовательный (принятие решения) – определение метода моделирования; результирующий (информационный) – решение и анализ данных на основе выбранного метода моделирования с использованием прикладных программ.

Обучение моделированию студентов можно рассматривать как способ реализации предшествующих, сопутствующих и последующих связей, придающий изучаемому математическому содержанию целостность и фундаментальность. Такое обучение предполагает необходимость создания специальных математических моделей, направленных на будущую профессиональную деятельность, а также формирования у студентов построения и исследования простейших моделей, связанных с изучением других дисциплин, содержательно интерпретировать результаты этих исследований на основе перспективных связей.

Использование моделирования в обучении студентов можно представить в виде двух частей: содержательной, которую необходимо усвоить студентам в процессе обучения, и познавательной, которую они должны воспроизводить или владеть. Составным элементом учебной деятельности является математическое моделирование. Первый этап определяется задачей формирования у студентов основ понятийного и теоретического типа мышления, как основ содержательного восприятия и осмысления. Второй этап состоит в исследовании места и роли моделирования, постановки задачи, как особой формы воспроизведения, в формировании у студентов умения выполнять основные алгоритмы (схемы действий и операций), которыми они должны уметь пользоваться в процессе различных понятий.

При проектировании и структурировании учебного материала необходимо учитывать следующие принципы: содержание учебного материала должно соответствовать уровню теоретической подготовки студентов по основным разделам математики; создание и накопление базы заданий для успешного усвоения студентами общепрофессиональных дисциплин и дисциплин по выбору, четкого представления возможностей математического аппарата; содержание учебных дисциплин должно раскрывать методы научного исследования, определяя метод моделирования на основе междисциплинарных связей.

Организацию учебного процесса студентов по владению методом математического моделирования необходимо проводить в соответствии с положениями [8]:

1. На лекциях и занятиях семинарского типа раскрывается фундаментальный характер дисциплины, вводятся основные понятия «модель», «метод моделирования», «методы математического моделирования». Любую предметную область можно рассматривать как модель, описывающую некоторую совокупность объектов, явлений и процессов реального мира. Рассматриваются материальные (предметные), знаковые (графические, математические) и компьютерные модели на основе прикладных программ, применяемые в будущей профессиональной деятельности.

2. При решении задач с применением методов математического моделирования необходимо освоить обобщенный прием, в соответствии с которым большинство задач строятся по схеме: содержательная постановка задачи – концептуальная постановка задачи, построение математической модели, выбор методов решения задачи – поиск решения задачи – проверка адекватности модели – анализ результатов моделирования.

По обучению решению задач на построение математических методов и моделей следует определить и реализовать следующие этапы:

1. Во время проведения занятия преподаватель предлагает студентам задачи из определённого раздела, в котором определяются дидактические элементы знаний (основные термины, алгоритмы, математические методы) и объясняется решение задачи, далее студенты самостоятельно решают задачи данного типа в соответствии с выбранным алгоритмом, при решении более сложных задач студенты используют пакеты прикладных программ.

2. По окончанию занятия преподаватель объявляет итоги деятельности студентов, оценивает формирование у них знаний, умений, владений (способность обобщать, сравнивать, анализировать, делать выводы) по решению задач.

Особое внимание следует обратить на подборку и классификацию прикладных задач. K первому классу задач можно отнести такие задачи, в решении которых исключён процесс формализации, то есть необходимая для решения задачи математическая модель уже содержится в условии задачи. Решение такой задачи включает математическое исследование готовой модели, анализ и обобщение полученных математических результатов. В процессе решения задач второго класса, которые сформулированы на языке предметной области, применяется этап математического моделирования: построение математической модели, выбирается алгоритм решения, решение осуществляется при помощи пакетов прикладных программ, интерпретация и анализ полученных результатов. При решении задач второго класса определяется уровень изучения междисциплинарного материала.

В ходе различных контролирующих мероприятий (контрольные работы, индивидуальные и тестовые задания) с использованием специально разработанных контрольных вопросов и заданий (текущих и промежуточных) проверяется оценка сформированности у студентов элементов компетенций в области применения математического моделирования.

Обучение методам математического моделирования студентов данной специальности должно быть ориентировано на примеры изучения реальных объектов, процессов и явлений, связанных с будущей профессиональной деятельностью. В процессе преподавания учебных дисциплин должно происходить использование методов математического моделирования и формирование профессиональных компетенций в области применения исследования операций и метода моделирования.

Преподаватель может усиливать предыдущие, сопутствующие, последующие связи между учебными дисциплинами, направленно используя, например, междисциплинарные учебно-познавательные задачи, профессионально-направленные или социально-ориентированные задания, которые формируют элементы компетенций у студентов. Компетентностный подход приводит к необходимости применения междисциплинарных связей, добавив необходимость о целенаправленном усилении учебной дисциплины с другими. Междисциплинарные связи расширяют образовательное пространство, создают междисциплинарное пространство, в котором студент применяет знания и умения по каждой дисциплине в новых условиях, за рамками самой дисциплины, развивает навыки и владения в будущей профессиональной деятельности.