На фоне обостряющихся проблем, связанных с применением традиционных способов энергопроизводства (рост цен на углеродное топливо, ухудшение экологии городов, обострение проблемы обеспечения пресной водой) [4], является очевидной необходимость широкого использования атомной энергии.
На основе опыта строительства судовых реакторных установок для гражданского и военно-морского флота разработаны проекты для атомных станций малой и средней мощности, которые способны решить энергетические задачи, связанные с активным освоением территорий с децентрализованным энергоснабжением, расширением добычи редких металлов [4], подъемом добычи газа, угля, развитием перерабатывающей промышленности. Принятые технологические решения позволяют рекомендовать установки данного типа в качестве энергоисточников атомных опреснительных комплексов, создаваемых на основе нефтяных платформ.
Расчет ядерной энергетической установки на стадии эскизного проектирования должен обеспечить возможность обоснованного окончательного выбора основных конструкционных характеристик активной зоны реактора и условий ее эксплуатации, к которым относятся:
- геометрия активной зоны, тип топливной решетки, конструкция тепловыделяющих элементов (твэлов), конструкция и число тепловыделяющих сборок (ТВС);
- номенклатура начального обогащения (изотопный состав) топлива ТВС первой загрузки и подпитки, режим перегрузок топлива;
- принципы компенсации реактивности реактора, конструкция и число органов регулирования, тип и размещение выгорающих поглотителей в ТВС [3].
Цель исследования
Цель работы заключается в определении оптимальных нейтронно-физических характеристик реакторной установки типа ВБЭР тепловой мощностью 280 МВт.
Для реактора данного типа выбрана бесчехловая ТВС (типа ТВСА), хорошо зарекомендовавшая себя на АЭС с водо-водяными реакторами в России и за рубежом [4]. В каждой ТВС содержится 306 твэлов укороченного типа, где высота топливного столба составляет 2500 мм, 6 твэгов (смесь топлива с меньшим обогащением и выгорающим поглотителем), 12 направляющих каналов для СУЗ (стержни системы аварийной защиты). Активная зона сформирована из 55 ТВС.
Материалы и методы исследования
Для расчетного обоснования оптимальных нейтронно-физических характеристик реактора использовалась программа WIMS-D4 [6]. Программа применялась для определения оптимальной загрузки и обогащения топлива, кампании реактора, исходя из полученных значений коэффициента размножения. Расчеты спектра нейтронов проводились в двух групповом приближении. Расчет выгорания выполнялся с временным шагом 10 эффективных суток. Расчеты нейтронно-физических характеристик реактора проводились при постоянной средней температуре в активной зоне.
Результаты исследования и их обсуждение
В данной работе приводятся результаты расчетного анализа с целью оптимизации топливной загрузки, обогащения, загрузки выгорающего поглотителя реактора.
Удлинение кампании реактора возможно путем повышения обогащения топлива по U235, что приводит к избыточной реактивности в начале кампании [1]. На рис. 1 приведена зависимость времени облучения от топливной загрузки на твэл и обогащения по U235.
Рис. 1. Зависимость времени облучения от топливной загрузки на твэл при значениях обогащения по U235: 8,5 % (1), 7,5 % (2), 6,5 % (3) и 5,5 % (4)
Для обеспечения кампании реактора около 4340 сут (~ 12 лет) выбрана загрузка урана на твэл на уровне 1,06 кг при обогащении по U235 – 7,5 % (рис. 1). Данный вариант загрузки урана обеспечивает оптимальное среднее по реактору выгорание топлива 67,3 МВт·сут/кг, а также удельный расход U235 – 1,114 г/МВт·сут. Выбор обогащения по U235 – 8,5 % приводит к увеличению средней по реактору глубины выгорания топлива до 74,7 МВт·сут/кг, превышающей допустимое значение – 68 МВт·сут/кг. Превышение глубины выгорания топлива ведет к ухудшению стойкости материалов оболочек твэлов [5].
Выбор загрузки урана на твэл больше уровня 1,06 кг приводит к увеличению размеров ядерного реактора, что неразумно при плавучем базировании, где играет важную роль компактность установки.
Для компенсации избыточной реактивности и снижения нагрузки на управляющие стержни используется борное регулирование. В начальный период работы реактора концентрация в первом контуре борной кислоты (H3BO3), в которой бор содержит изотопы B10, сильно поглощающие нейтроны, максимальна. По мере выгорания топлива концентрация кислоты снижается.
При использовании в теплоносителе первого контура борной кислоты большой концентрации повышается коррозия материалов активной зоны, а также увеличивается объем вводимых с борной кислотой химических примесей, способных активизироваться в активной зоне реактора и, как следствие, повысить радиационные риски в зоне его обслуживания [1]. Для того чтобы избежать чрезмерного использования борного регулирования, применяют выгорающие поглотители в составе ТВС реакторов.
В качестве поглотителей нейтронов в ядерных реакторах широко используются гадолиний, эрбий, кадмий, бор и, в меньшей степени, самарий и европий [2]. При выборе поглотителей должны учитываться одновременно наиболее важные параметры, характеризующие и работу реактора, и свойство самого поглотителя. К характерным параметрам реактора следует отнести длительность цикла, уровень выгорания топлива и т.п.
Гадолиний отличает аномально высокое поглощение тепловых нейтронов. Сечение поглощения тепловых нейтронов природным гадолинием достигает величины 46 000 барн, а у изотопа Gd157 сечение захвата – 255000 барн (табл. 1) [2].
Таблица 1
Свойства стабильных изотопов гадолиния
Изотоп |
Содержание в природном Gd ( %) |
Сечение поглощения тепловых нейтронов (барн) |
152 154 155 156 157 158 160 |
0,20 2,18 14,80 20,47 15,65 24,84 21,86 |
10,0 80,0 61000,0 2,0 255000,0 2,4 0,8 |
Гадолинию свойственно не только высокое сечение поглощения нейтронов, но и хорошая совместимость с другими компонентами, в том числе и с оксидом урана [2].
В условиях опытно-промышленного производства изготавливаются топливные таблетки из диоксида урана с массовой долей природного оксида гадолиния (Gd2O3) от 0,05 до 7,0 %. Таблетки производятся на промышленном оборудовании отечественного производства и из отечественных материалов [2].
Для обеспечения компенсации избыточного запаса реактивности при выбранных параметрах топливной загрузки и обогащения проведен выбор загрузки выгорающего поглотителя и концентрации борной кислоты. В качестве выгорающего поглотителя используется природный Gd2O3 (оксид гадолиния), распределенный равномерно по объему топливных таблеток в части твэгов.
На рис. 2 показана зависимость коэффициента размножения ячейки, содержащей одну ТВС с окружающей долей замедлителя, от времени ее облучения в реакторе при разных массовых долях природного оксида гадолиния, в том числе нулевой. Ячейка без выгорающего поглотителя (кривая 1) дает слишком высокие значения коэффициента размножения в начале кампании, что требует высокой эффективности средств компенсации реактивности.
Для выбора оптимальной концентрации оксида гадолиния в 6 твэгах, снижающей избыточную реактивность, выполнена серия расчетов (кривые 2, 3, 4 на рис. 2). В результате выбраны твэги с массовой долей Gd2O3, равной 7 %, которые компенсируют запас избыточной реактивности на 0,025 (табл. 2). В ТВС расположено 6 твэгов с обогащением топлива UO2 по U235, равным 7 % и с массовой долей Gd2O3 – 7 %. Твэг с массовой долей Gd2O3 более 7 % не следует применять вследствие ухудшения химических, механических и термодинамических свойств.
Рис. 2. Зависимости коэффициента размножения от времени облучения для ячейки ТВС, не содержащей выгорающего поглотителя (1) и содержащей в 6 твэгах с концентрацией Gd2O3: 3 % (2), 5 % (3) и 7 % (4); 5 – Kг
Рис. 3. Зависимости коэффициента размножения от времени облучения для ячейки ТВС, не содержащей выгорающего поглотителя (1), содержащей в 6 твэгах с концентрацией Gd2O3 7 % без добавления (2) и с добавлением в концентрации 5г/кг (3) H3BO3; 4 – Kг
Таблица 2
Запас реактивности, компенсируемый твэгами с выгорающим поглотителем на основе природного Gd2O3
Массовая доля Gd2O3 |
Компенсируемый запас реактивности |
3 % |
0,019 |
5 % |
0,024 |
7 % |
0,025 |
На рис. 3 показана зависимость коэффициента размножения ячейки от времени ее облучения в реакторе при выбранной массовой доле природного оксида гадолиния (7 %) с добавлением борной кислоты в теплоноситель в концентрации 5 г/кг (кривая 3). Там же для сравнения нанесены зависимости для случая без добавления борной кислоты (кривая 2), а также и без кислоты и без оксида гадолиния (кривая 1).
Из рисунка видно, что добавление борной кислоты позволяет добиться более идеального изменения избыточной реактивности в процессе кампании реактора. При этом избыточная реактивность сильно уменьшается в начале кампании, почти приближаясь к величине Kг (величине коэффициента размножения в бесконечной среде, при котором эффективный коэффициент размножения равен 1). При концентрации борной кислоты в теплоносителе, равной 5 г/кг, избыточная реактивность в начале кампании будет скомпенсирована на величину 0,315.
Заключение
В результате расчетного анализа выбраны оптимальные топливная загрузка, обогащение топлива и параметры средств компенсации избыточной реактивности реактора типа ВБЭР-100 с тепловой мощностью 280 МВт. Оптимальная загрузка топлива для обеспечения кампании ядерного реактора около 4340 сут (12 лет) была выбрана на уровне 1,06 кг при обогащении по U235 – 7,5 %. Данный вариант загрузки урана обеспечивает оптимальное выгорание топлива (среднее по реактору) – 67,3 МВт·сут/кг, а также удельный расход U235 – 1,114 г/МВт сут. Для компенсации избыточной реактивности в реакторе 6 твэлов в каждой ТВС замещаются твэгами, а также используется борная кислота в теплоносителе. Массовая доля оксида гадолиния в твэгах, равная 7 %, компенсирует запас избыточной реактивности на 0,025. Твэги с массовой долей Gd2O3 более 7 % не следует применять вследствие ухудшения химических, механических и термодинамических свойств. Добавление борной кислоты в теплоноситель в концентрации, равной 5г/кг, позволяет уменьшить величину избыточной реактивности в начале кампании на 0,315.