Scientific journal
Modern high technologies
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 0,899

ENHANCEMENT OF THE DIGITAL RECURSIVE FILTER SETUP FOR THE SYNCHRONOUS MACHINES DIAGNOSTIC SYSTEMS

Polishchuk V.I. 1 Mozhaev V.D. 1 Gnetova D.A. 1 Kritsky M.V. 1
1 Samara State Technical University
Because of the increasing requirements to efficiency of operation and reliability of the electrogenerating equipment work the increasing value is purchased by measures for the prevention and early damage detection by means of technical diagnostics. At the same time the modern means of digital information processing give the opportunity to make new sensitive devices of large synchronous generators technical diagnostics, capable to reveal difficult defects in the early stage of their appearance that justifies any costs for their development. The relevance of this paper is conditioned by the need of the filter synthesis which is capable to select the useful harmonic component with frequency f? from EMF unipolar signal which is 1,5–3?% of the main signal and to suppress the main parasitic harmonic with frequency 2f?. The filter synthesis with such parameters is necessary to make the synchronous machine diagnostic system which is based on ways of the synchronous machine rotor winding turn-to-turn short-circuits identification where the useful information about such damage type origination is the harmonic component, EMF allocated from the unipolar signal in magnetic intrusion detector output. It is located in the butt zone of machine and measure the stray magnetic field asymmetry level. Work objective: to define the optimum digital filter which is capable to allocate a friendly signal and to make the parameter setting technique of the designed filter. Investigative techniques: digital processing methods of the discrete experimentally removed signal were used in filter synthesis process. Results. As a result of the contrastive analysis of the Butterworth, I sort Chebyshev, II sort Chebyshev and elliptic filters frequency response function the best in quality of allocation demanded harmonic at the smallest filter order is defined the Cauer filter. The technique and setup algorithm of the Cauer filter is developed where using the local nonuniformity of frequency response function was provided transmission corridor of the allocated frequency f? and the parasitic frequency 2f? has been effectively suppressed.
synchronous generator
diagnostic system
digital filter
synthesis
harmonic component
friendly signal
passband
elliptic filter

На сегодняшний день к электрогенерирующему оборудованию предъявляются всё более высокие требования по эксплуатационной надежности, при этом большое значение приобретают меры по предупреждению и раннему обнаружению дефектов средствами технической диагностики. В тоже время современные средства цифровой обработки информации дают возможность проектировать новые чувствительные устройства технической диагностики крупных синхронных генераторов [1, 2, 5–8], способные достоверно выявлять сложные дефекты на ранней стадии их развития, что оправдывает любые затраты на их разработку. В ряде устройств [3, 9, 10, 13] диагностики повреждений межвитковой изоляции обмотки ротора, требуется разработка специфического фильтра, которому необходимо качественно выделить гармоническую с частотой равной частоте вращения машины из однополярного сигнала на выходе магнитометрического датчика.

Целью данной работы является синтез оптимального цифрового фильтра, способного качественно выделить полезный сигнал, и разработка методики настройки параметров проектируемого фильтра.

Постановка задачи

Для реализации устройства диагностики синхронной электрической машины необходимо синтезировать фильтр, способный качественно выделить полезный гармонический сигнал с частотой fv = f1/p, где f1 – частота сети, p – число пар полюсов. При этом основными паразитными компонентами сигнала выступает постоянная составляющая, гармоническая с частотой 2fv, а также посторонние шумы [4]. Разработать методику настройки фильтра.

Способ диагностики базируется на анализе сигнала ЭДС с выхода магнитометрического датчика, установленного в торцевой зоне синхронной электрической машины рис. 1, а.

polihuk1.wmf

Рис. 1. Сигнал ЭДС на выходе магнитометрического датчика

Анализ кривой выпрямленного значения ЭДС показывает, что при витковом замыкании в обмотке явнополюсного ротора с числом пар полюсов p = 1 в выпрямленном сигнале, помимо постоянной и 100 Гц составляющей, появляется огибающая с частотой, равной частоте вращения машины (50 Гц) – рис. 1, б. Полезной информацией о наличии виткового замыкания является появление в выпрямленном сигнале частоты fv = f1/p, где f1 – частота сети.

Способ построения диагностической системы [1, 2, 5–8] заключается в том, что измеренный электрический сигнал ЭДС с выхода магнитометрического датчика, установленного в торцевой зоне синхронной электрической машины, преобразуют в однополярный, из которого затем выделяют гармоническую с частотой fv = f1/p. Если она превысит установленную величину, то это воспринимают как сигнал о наличии виткового замыкания в обмотке ротора синхронной машины.

Очевидно, что основным элементом устройства диагностики выступает фильтр, способный с минимальными потерями выделить полезный сигнал с частотой fv, например, для системы диагностики синхронной машины с частотой вращения 3000 об/мин это будет частота равная 50 Гц. Фильтр должен максимально подавить частоту 2fv, для данного типа машины это частота 100 Гц. Особенностью работы данного фильтра является сверхмалое расстояние между частотами fv и 2fv, составляющее всего одну октаву, поэтому в данном случае нецелесообразно использование стандартной методики его настройки. Поскольку паразитной частотой является всего одна гармоническая 2fv, то при синтезе фильтра ставилось не использовать комбинацию фильтров высоких и низких частот для формирования полосно-пропускающего фильтра, а использовать характерные локальные неоднородности амплитудно-частотные характеристики (АЧХ) цифрового рекурсивного фильтра. Тип фильтра определялся из анализа АХЧ наиболее известных фильтров: Баттерворта, Чебышева I рода, Чебышева II рода и Кауэра.

На рис. 2 представлены АЧХ анализируемых цифровых фильтров. Использование фильтра Баттерворта (линия 2 (синяя)), является одним из худших вариантов. Он значительно подавляет полезную гармоническую составляющую ΔБ.(fv) и слабо подавляет «паразитную» гармоническую составляющую с частотой 2fv – ΔAБ.(2fv). Фильтр Чебышева I рода (линия 1 (зелёная)), минимально подавляет сигнал с частотой fv ΔAЧ.I(fv), но при этом подавляет слабее фильтра Баттерворта паразитную гармоническую с частотой 2fv ΔAЧ.I(2fv). Фильтр Чебышева II рода (линия 3 (оранжевая)) отлично подавляет гармонику с частотой 2fv ΔAЧ.II(2fv), однако он имеет самый высокий уровень ослабления полезного сигнала с частотой fv ΔAЧ.II(fv). Как видно из рис. 1, АЧХ эллиптического фильтра (линия 4 (красная)) является наилучшей по критерию пропускания и подавления.

Как видно из анализа АХЧ эллиптического фильтра (рис. 3), для поставленной задачи целесообразно использовать при настройке фильтра локальные неоднородности АХЧ.

Передаточная функция эллиптического фильтра имеет два варианта записи [14, 15]. Для четного порядка фильтра

polih01.wmf

для нечетного порядка фильтра

polih02.wmf

где polih03.wmf; Ki – коэффициент усиления; ai, bi, ci, c0 – табличные значения параметров эллиптического фильтра, приведенные в [10].

АЧХ эллиптического фильтра низких частот имеет пульсации, как в полосе пропускания, так и в полосе подавления (рис. 3).

При настройке параметров эллиптического фильтра по стандартной методике [14, 15] принято использование следующих обозначений:

– неравномерность передачи в полосе пропускания (PRW), дБ, равна

PRW = – 20 log10А1, (1)

где А1 – нижняя граница предельно допустимой неравномерности АЧХ в полосе пропускания.

– минимальное затухание в полосе подавления (MSL), дБ, равное

MSL = – 20 log10А2, (2)

где А2 – верхняя граница предельно допустимой неравномерности АЧХ в полосе подавления.

– ширина переходной области TW, которая в нашем случае составляет

TW = 2fv – fv (3)

polihuk2.wmf

Рис. 2. Амплитудно-частотные характеристики рекурсивных фильтров: 1 – АЧХ фильтра Чебышева I рода; 2 – АЧХ фильтра Баттерворта; 3 – АЧХ фильтра Чебышева II рода; 4 – АЧХ эллиптического фильтра

polihuk3.wmf

Рис. 3. Амплитудно-частотная характеристика эллиптического фильтра низких частот

Для заданных значений PRW и MSL повышение порядка приводит к увеличению числа пульсации в полосах пропускания и подавления и уменьшению TW.

Согласно [14] передаточная функция эллиптического фильтра по форме идентична передаточной функции фильтра Чебышева [15]. Постоянные параметры ai, bi, ci, c0, которые отличаются от параметров инверсного фильтра Чебышева, вычисляются крайне сложно, поскольку процесс вычисления требует знания эллиптических Якоби [14]. Потому следует использовать стандартные настройки эллиптического фильтра при фиксированных значениях PRW. В [14] приведены таблицы коэффициентов ai, bi, ci, c0, соответствующие различным величинам неравномерности передачи в полосе пропускания PRW = 0,1 дБ; 0,5 дБ; 1 дБ; 2 дБ; 3 дБ.

Если выбрать PRW = 3 дБ и нанести на ось ординат АЧХ соответствующее ей значение А1, то на оси частот получим величину fп – граничную частоту полосы пропускания эллиптического ФНЧ (рис. 3).

Учитывая все вышесказанное, настройку фильтра предлагается производить таким образом, чтобы максимальный коэффициент передачи соответствовал частоте fv = 50 Гц. Также для настройки фильтра воспользуемся еще одной его особенностью – в полосе подавления имеются точки минимума. Поэтому вторым критерием настройки фильтра предлагается настройка на минимальный коэффициент усиления в полосе подавления частоты 2fv = 100 Гц (рис. 3).

Настройка фильтра производится в следующем порядке:

1. Определить значение коэффициента ai как отношение основной несущей частоты к частоте fv:

polih04.wmf.

2. Производим уточнение коэффициента ai по таблице [10] и из таблицы определяем остальные коэффициенты фильтра.

3. Определяем граничную частоту полосы пропускания fп такой, которая будет обеспечивать совпадение fv с частотой ближайшего максимума полосы пропускания fmax.

4. Производим уточнение частоты, соответствующей максимальному коэффициенту усиления:

polih05.wmf.

5. Строим амплитудно-частотную характеристику.

Блок-схема алгоритма расчета эллиптического фильтра представлена на рис. 4.

По вышеприведенной методике произведем расчет эллиптического фильтра при работе генератора на сеть с частотой 50 Гц:

1. Определим, каким должен быть коэффициент ai по формуле

polih06.wmf.

2. Минимальный порядок эллиптического фильтра, который имеет коэффициент ai является третий. Принимаем эллиптический фильтр третьего порядка со следующими параметрами:

a1 = 3,611302; b1 = 0,253951; c1 = 0,873882; c0 = 0,0335021.

3. Принимаем граничную частоту полосы пропускания fп = 56 Гц, которая будет обеспечивать совпадение fv = 50 Гц с частотой ближайшего максимума полосы пропускания fmax = fv.

polihuk4a.wmf

Рис. 4. Блок-схема алгоритма расчета эллиптического фильтра

4. Произведем расчет частоты, соответствующей максимальному коэффициенту усиления:

polih07.wmf.

Для настройки устройства был смоделирован тестовый сигнал, состоящий из пяти частей: низкий нормальный сигнал (полуволны симметричны), полуволны отличаются на 1,5 %, участок роста полуволн (имитация переходного процесса), высокий сигнал с разницей амплитуд полуволн в 1,5 %, высокий нормальный сигнал. Устройство диагностики достоверно срабатывало при разнице полуволн в 1,5 % и выше, что говорит о качественном выделении фильтром полезной гармонической и способности устройства диагностики выявлять замыкание одного и более витка в обмотке ротора у синхронных машин средней и большой мощности.

Заключение

В результате сопоставительного анализа амплитудно-частотных характеристик наилучшим по качеству выделения требуемой гармонической определен фильтр Кауэра. Разработана методика расчета параметров эллиптического фильтра с учетом локальных неоднородностей амплитудно-частотной характеристики, позволяющая минимизировать потери полезного сигнала и максимально подавить паразитную частоту.