Scientific journal
Modern high technologies
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 0,940

STUDY OBJECTIVES THE THERMAL STABILITY OF THE WALLING OF THE ORTHODOX CHURCHES

Kochev A.G. 1 Moskaeva A.S. 1 Kocheva E.A. 1 Martynov A.A. 1
1 Nizhny Novgorod State University of Architecture and Civil Engineering
1626 KB
During the reconstruction, as with any new construction of buildings and structures, regardless of ha-character of his appointment, initially in the design calculation of heat loss of each room. On the basis of this calculation is determined by the thermal capacity of the heating system in whole and its separate elements. Errors in the calculation of the heat loss is unacceptable, as they will do the job of a heating system is unsatisfactory. The solution of the problem of the thermal regime of floors and recessed parts of the walls is reduced to the study of the dynamics of temperature fields in the soil bases of buildings and plants tions where heat and mass transfer processes. In turn, these processes caused by the presence of a potential difference of humidity, temperature gradients, electric, magnetic and other fields. Study spaces in plan and height showed a relatively uniform distribution of the topics of temperature resulting from the mixing of the air, allowing you to take the same value for the tempera-ture of the internal air in the calculation of heat transfer on all surfaces. The exception is areas with large excess heat and airflow using non-isothermal jets.
heat capacity
thermal conditions
temperature field
steady-state heat transfer
heat resistance

Основными отличительными факторами, влияющими на микроклимат православных храмов и сооружений по сравнению с католическими, являются [3, 4]:

– значительное количество прихожан в храме во время службы;

– большое количество зажжённых свечей во время службы;

– значительно большее количество престольных праздников в год.

Тепловой баланс церквей состоит из:

– теплопотерь через ограждающие конструкции;

– теплопотерь на нагрев приточного воздуха и естественного вентиляционного и инфильтрационного воздухообмена;

– теплопоступлений технологических (свечи);

– теплопоступлений от людей;

– теплопоступлений от установок регулирования температурного режима помещения (система отопления или кондиционирования).

Потери тепла каждым помещением складываются из теплопотерь через отдельные его ограждения.

koc01.wmf. (1)

Одним из таких ограждений являются стены и полы, соприкасающиеся с грунтом.

В некоторых случаях возможно упрощение задачи и изучение процесса теплопроводности в грунтах, не связанного с массообменными процессами. Такой подход применялся раньше во многих работах, посвященных исследованию теплового режима полов и заглубленных частей зданий [5, 6, 7].

В.Д. Мачинский предложил простой, но очень приближенный метод расчета, при котором поверхность пола и стены делится на зоны двухметровой ширины параллельно наружным стенам. Для каждой зоны принимается соответствующая постоянная величина термического сопротивления. Автор указывал на большую сложность температурного режима пола и грунтов оснований и его связь не только с температурами наружного и внутреннего воздуха, но и с процессами теплообмена, протекающими в грунте под зданием и вне его. Из-за сложности более точного решения задачи и сравнительно небольшого удельного веса теплопотерь через полы в величине общих теплопотерь многоэтажных зданий был предложен данный метод расчета. Именно он приводился в нормативной литературе.

Этот метод основывается на стационарной схеме передачи и не отражает сложные процессы формирования температурных полей в строительных конструкциях и грунтах вблизи них. Если здание имеет заглубленные участки стен, то они рассматриваются как продолжение поверхности пола.

Профессор Аше Б.М., рассматривая потери теплоты через полы на сплошном грунте и стены, заглубленные в грунт, отмечает, что «ряд исследователей подходил к разрешению этого вопроса, но практически приемлемого и в то же время научного теоретически обоснованного метода расчета теплопотерь в неограниченное пространство грунта дать не удалось».

В работах А.А. Сандера и С.Н. Шорина рассматриваются методы расчета теплопотерь через полы по грунту при стационарном режиме теплопередачи, когда учитывается конкретный коэффициент теплопроводности грунта, конструктивная схема расположения здания на грунте, разность температур наружного и внутреннего воздуха.

Основой для таких расчетов служило общее решение двумерного температурного поля в полуограниченном массиве, когда на поверхности задано распределение температуры в виде функции t1 (x). Это решение определяется интегралом Пуассона

koc02.wmf. (2)

Решение уравнения (2) для полосы на поверхности шириной –B/2 ≤ x ≤ B/2, в пределах которой температура постоянная и равна t1, а за ее пределами также постоянна и равна t2, имеет следующий вид:

koc03a.wmf

koc03b.wmf. (3)

Формула (3) позволяет получить выражение для потока тепла в полуограниченном массиве:

koc04a.wmf

koc04b.wmf (4)

и на поверхности массива при y = 0

koc05.wmf. (5)

В работе С.Н. Шорина приводятся приближенные выражения для определения распределения теплового потока, аналогичные выражению (5), но с учетом толщины стены. Делается попытка решить пространственную задачу распределения теплоты в массиве грунта путем простого сложения двух плоских задач. При этом сам автор упоминает о том, что пространственная задача им значительно упрощена, а результаты, полученные с применением данного метода, завышены.

А.А. Сандер предложил метод расчета теплопотерь через полы при стационарном режиме на основе решения двумерной задачи теплопроводности с помощью методов теории функций комплексного переменного, а именно, методов конформных преобразований. В работе автора, посвященной вопросу расчета теплопотерь через стены и полы заглубленных в грунт зданий и сооружений, было показано, что строительные нормы ни количественно, ни качественно не отражают истинной картины теплообмена воздуха помещения с наружным воздухом через пол и грунт.

А.А. Сандлер рассматривает случай, когда пол подвального помещения заглублен. При этом температура воздуха в помещении равна tв, температура наружного воздуха – tн. коэффициенты теплообмена поверхностей грунта за пределами сооружения, пола и стены помещения равны соответственно α1, α2 и α3.

Для решения поставленной задачи автором было принято несколько допущений.

1. Коэффициент теплопроводности грунта является величиной постоянной, хотя в действительности теплофизические свойства грунта зависят от структуры грунта, его влажности и температуры и, следовательно, меняются в пространстве и во времени, т.е. автором был рассмотрен стационарный режим.

2. Принятое в работе равенство коэффициентов теплопроводности грунта и фундамента. Это допущение возможно вследствие того, что, во-первых, коэффициенты теплопроводности грунта и увлажненной кладки, лежащей в грунте, незначительно отличаются друг от друга, а во-вторых, массив фундамента очень мал по сравнению с массивом грунта.

3. Коэффициенты теплообмена α1, α2 и α3 являются величинами постоянными и имеют общепринятые в строительной теплотехнике значения.

В ходе исследований А.А. Сандлером было получено выражение для определения полных теплопотерь через полосу пола и стены шириной в 1 м.

koc06.wmf, (6)

где отношение koc07.wmf является геометрической характеристикой рассматриваемого сооружения, которая, в свою очередь, как было установлено автором, описывается отношениями a/b и c/a, следовательно, koc08.wmf является функцией a/b и c/a.

Также была предложена методика определения потерь тепла полами на грунте и стенами для помещений, заглубленных в грунт. По графику, который приводится автором, по известным a/b и c/a определяется отношение koc09.wmf (рис. 1). Затем из уравнения (6) рассчитываются теплопотери.

Основными недостатками метода расчета теплопотерь полов по грунту, положенного в основу норм, являются:

– неправильный учет тепловой инерции массива грунта, которая практически приравнивается к тепловой инерции наружных стен, так как расчетная температура наружного воздуха в формуле принимается равной средней температуре наиболее холодной пятидневки; затухание амплитуды колебания температуры наружного воздуха в массиве грунта во много раз превышает значение затухания амплитуды в стене. Это обстоятельство приводит к значительному завышению расчетных теплопотерь;

– отсутствие учета сезонного промерзания грунта вне контура здания;

– невозможность определения зоны активного воздействия нестационарных температур наружного воздуха и выявления пристенной зоны, требующей теплоизоляции.

Методику расчета теплопотерь через полы, учитывающую нестационарность реальных физических процессов, предложил Гиндоян А.Г. В результате аналитического решения дифференциальных уравнений стационарной и нестационарной теплопроводности для двумерной области были получены зависимости для расчета стационарной и нестационарной составляющих теплопотерь через пол здания.

Стационарная составляющая определяется как функция перепада между температурой поверхности пола и среднегодовой температурой поверхности грунта за пределами здания, коэффициента теплопроводности грунта, ширины здания, толщины наружной стены здания и координаты рассматриваемой точки на поверхности пола.

Нестационарная составляющая определяется амплитудой годовых колебаний температуры поверхности грунта, значениями теплофизических коэффициентов грунта (теплопроводности и температуропроводности), шириной здания, толщиной наружной стены, координатой рассматриваемой точки на поверхности пола.

Постановка задачи определения теплопотерь через полы по грунту основывается на следующих предпосылках [2]:

kocev1.wmf

Рис. 1

– автор рассматривает установившийся режим эксплуатации здания;

– поверхности пола помещения и грунта за пределами здания находятся на одном уровне;

– теплофизические свойства материалов пола и фундамента незначительно отличаются от свойств грунта;

– геотермический поток тепла не оказывает существенного влияния на формирование температурного режима пола;

– теплообмен поверхности грунта и пола с окружающей воздушной средой описывается граничными условиями 3-го рода. Применением принципа дополнительного слоя они могут быть условно приведены к условиям 1-го рода, поэтому задача рассматривается в граничных условиях 1-го рода.

В общем случае задача расчета теплопотерь через полы по грунту является трехмерной. Исходя из того, что длина промышленных и сельскохозяйственных зданий существенно превосходит их ширину, А.Г. Гиндоян рассмотрел двумерную нестационарную задачу теплопередачи в полуограниченном массиве, на поверхности которого внутренняя зона шириной B отделена от внешней участками стен толщиной δ, м (рис. 2).

Решение поставленной задачи автор представил в виде суммы стационарной и нестационарной составляющих

t (x, y) = tc (x, y) + tнс (x, y). (7)

Автором было получено выражение для определения стационарной составляющей теплопотерь

koc10.wmf. (8)

Эта зависимость справедлива при δ<<(B/2).

На практике теплопотери через полы по грунту определяют по зонам, что существенно упрощает схему расчета. Придерживаясь этого общепринятого принципа, А.Г. Гиндоян рекомендовал аналогичный подход, но при этом теплопотери в первой зоне, прилегающей к наружной стене, определяются как сумма стационарной и нестационарной составляющих, а в остальных зонах рассматривается лишь стационарная составляющая.

Принятый подход в исследовании задачи нахождения потерь теплоты основан на принципе суперпозиции и является физически правомерным. Автор показал, что расчеты по предложенному методу позволяют получить более точные данные о действительных теплопотерях через пол зданий.

Вместе с тем принятые упрощения сужают возможности использования данного подхода. Предположение о том, что материал пола, стены и грунт имеют одинаковые теплофизические свойства, ведет к неточности в расчетах теплопотерь, особенно для зон пола, прилегающих к наружным стенам. В большинстве случаев конструкции стен и пола имеют меньшую, чем грунт теплопроводность. Косвенный учет фазовых переходов влаги в слое сезонного промерзания и изменения вследствие промерзания теплофизических свойств грунта вносит искажения в рассчитываемое температурное поле в этой зоне.

При рассмотрении теплового режима заглубленных конструкций православных храмов необходимо также принимать во внимании тот факт, что при изменении влажности грунта изменяется и динамика температуры, то есть не следует пренебрегать массообменными процессами, протекающими в грунтовом массиве. Поэтому наиболее правильным является совместное решение задачи теплопроводности и влагопроводности.

kocev2.wmf

Рис. 2

Явление совместного переноса тепла и влаги в почвах и грунтах, которые относятся к коллоидным капиллярно-пористым телам, достаточно полно рассмотрены в работах Лыкова А.В. Перенос тепла и влаги рассматривается автором в их неразрывной связи методами молекулярно-кинетической теории и термодинамики. Вопросу изучения формирования температурного режима грунтов в основаниях зданий и сооружений с учетом их теплофизических свойств посвящены работы Порхаева Г.В., Хрусталева Л.Н., Цытовича Н.А.

Тем не менее, следует отметить тот факт, что совместное решение задач теплопроводности и влагопроводности в отношении заглубленных в грунт ограждающих конструкций требует создания сложных математических моделей. В связи с этим на практике температурное поле рассчитывают отдельно, при этом влажностный режим учитывают при выборе тепловых характеристик процесса [7].

Все указанные факторы зависят, в свою очередь, от глубины заложения отдельных слоев.

Влажность грунта в естественном состоянии зависит от времени года и глубины заложения рассматриваемого слоя. Слои, расположенные ближе к поверхности земли, имеют меньшую влажность вследствие испарения влаги с поверхности и высушивания этих слоев. По мере приближения к грунтовым водам, влажность грунта растет, достигая максимальной величины в слоях, насыщенных грунтовыми водами.

Возмущающие воздействия наружной температуры на микроклимат подклетов церквей оцениваются теплоустойчивостью. Теплоустойчивость ограждений – это свойство ограждений сохранять относительное постоянство температуры при колебаниях теплового потока. Основной показатель – коэффициент теплоусвоения Y. Коэффициент теплоусвоения поверхности равен отношению амплитуд колебаний теплового потока Аq и температуры на поверхности ограждения koc11.wmf

koc12.wmf, (9)

где Аq принимается в зависимости от теплопотерь подклетов, объемно-планировочных решений и режимов работы систем вентиляции. Эти данные для церквей до сих пор отсутствуют [1].

Вопросы теплоустойчивости ограждений в настоящее время решены достаточно полно. Инженерные решения вопросов теплоустойчивости ограждений обобщены и развиты в работах А.М. Шкловера и В.Н. Богословского [1].

На основании анализа литературных источников можно сделать следующие выводы:

1. Задача по определению теплопотерь заглубленными ограждающими конструкциями зданий и сооружений рассматривалась в основном в отношении жилых многоэтажных, промышленных и сельскохозяйственных зданий, объемно-планировочные решения которых не сопоставимы с конструктивными особенностями православных храмов.

2. При рассмотрении теплового режима заглубленных конструкций зданий исследователями часто не учитывались массообменные процессы, протекающие в массиве грунта, хотя изменение влажности грунта приводит, в свою очередь, к изменению динамики формирования температурного режима грунтового массива, что влияет на величину теплопотерь заглубленными в грунт ограждающими конструкциями.

Целью исследований является разработка теоретических основ и практических рекомендаций по обеспечению нормативных теплотехнических характеристик заглубленных ограждающих конструкций и созданию требуемых микроклиматических условий в подклетах реконструируемых и восстанавливаемых православных храмов.