Тенденции современного общества направлены на развитие научных знаний и внедрение новых технологий во все сферы жизни. Это относится и к промышленности синтетического каучука, где происходит модернизация аппаратного оформления, методов управления, контроля технологическими процессами и др.
Однако, несмотря на внедрение ряда новых разработок у действующих производств, сохраняются недостатки, к которым можно отнести наличие твердых отходов, водных сбросов и воздушных выбросов.
Поэтому и на современном уровне развития существующей промышленности требуется дальнейшее развитие и совершенствование существующих технологий.
В целях повышения эффективности процесса, снижения экономических затрат и повышения качества получаемой продукции целесообразно применение физических полей и акустических колебаний в технологическом процессе выделения каучуков из латексов.
Ультразвук применяется для диспергирования наполнителя в полимерной композиции, для увеличения скорости полимеризации стирола, используется для очистки изделий от различных загрязнений, находит широкое применение в фармации [1-3]. Исследователи [4] подвергали латекс СКС-30 АРК ультразвуковому воздействию с помощью генератора марки УЗГ 13-0.1/22. Наблюдалось снижение поверхностного натяжения и увеличение радиуса латексных частиц.
Положительные результаты были полученые при использовании магнитных полей для повышения прочностных показателей клеевого соединения [5]. В статьях [6, 7] исследовали влияние магнитной обработки на процесс коагуляции латекса СКС-30 АРК перед введением в него водных растворов коагулирующих агентов. Данное воздействие позволило снизить расход коагулирующих агентов диметилдиаллиламмоний хлорида и поли-N,N-диметил-N,N-диаллиламмоний хлорида в 1,5–2 раза.
В работе исследуется влияние ультразвука и магнитного поля на процесс выделения каучука из латекса СКС-30 АРК в присутствии сополимера N,N-диметил-N,N-диаллиламмонийхлорида с SO2 (ВПК-10).
Внимание к использованию данного коагулянта базируется на том, что он может взаимодействовать с компонентами эмульсионной системы (мыла канифоли, таллового масла, сульфокислот, лейканолом) с образованием нерастворимых комплексов, которые захватываются образующейся крошкой каучука и не сбрасываются со сточными водами на очистные сооружения [8]. Однако высокая стоимость данного вещества сдерживает его применение в широких масштабах.
Материалы и методы исследования
В процессе изучения коагуляции использовали промышленный каучуковый бутадиен-стирольный латекс СКС-30 АРК (ТУ 38.40355-99), характеристика исследуемого образца представлена в табл. 1.
Таблица 1
Характеристика бутадиен-стирольного латекса СКС-30 АРК
Наименование показателя |
Значение |
Сухой остаток, % |
20,4 |
Содержание связанного стирола, % |
22,7 |
Поверхностное натяжение, мН/м |
65,3 |
Диаметр латексных частиц, нм |
55 |
Латекс перед смещением с коагулирующими агентами подвергали физической обработке (ультразвуком или магнитным полем).
Ультразвуковую обработку производили с помощью ультразвуковой ванны марки NETTYQ-9030. Кювету с латексом помещали в ультразвуковую ванну, наполненную водой, и проводили обработку в течение 5–15 минут при мощности 30 Вт.
Магнитную обработку проводили с помощью установки, описанной в статье [6]. Латекс, находящийся в предварительно подготовленной стеклянной кювете размером 15х30х50 мм (определяемой конструктивными особенностями установки) подвергали обработке магнитным полем различной интенсивности в течение 1, 5, 15, 25 минут. Основным элементом установки является электромагнитный индуктор, выполненный в переносном варианте. Величина применяемого напряжения магнитного поля 11·104 А/м.
После ультразвуковой или магнитной обработки проводили коагуляцию путем введения заданных количеств ~ 2,0 % водного раствора ВПК-10 по методике, описанной в работе [9]. Процесс коагуляции проводили при температуре 20 ± 2 °С. После введения в латекс расчетного количества ВПК-10 его перемешивали в течение ~ 2 минут и вводили раствор серной кислоты (концентрация ~ 2,0 %) до рН среды 2,5–3,0. Перемешивание продолжали дополнительно в течение 2–3 минут, после чего извлекали образовавшуюся крошку каучука из водной фазы (серум), измельчали, промывали дистиллированной водой и сушили в термостате при температуре 80–85 °С до постоянной массы.
Полноту коагуляции (выделения каучука) оценивали визуально – по прозрачности серума и гравиметрически – по массе образующейся крошки каучука.
Среднюю молекулярную массу полимеров определяли вискозиметрическим методом, а также методом гель-проникающей хроматографии на приборе ВЭЖХ системы Knauer серии Smartline (детектор-рефрактометр).
Результаты исследования и их обсуждение
Анализ полученных экспериментальных данных показал, что обработка латекса ультразвуком перед введением коагулянтов и серной кислоты приводит к снижению расхода ВПК-10 с 3,5–4,0 до 1,7–3,0 кг/т каучука, аналогичные зависимости получены и с применением магнитной обработки. Результаты представлены в табл. 2.
Таблица 2
Результаты эксперимента коагуляции латекса СКС-30 АРК
Расход на коагуляцию, кг/т каучука |
Ультразвуковая обработка |
Магнитная обработка |
||||
Выход коагулюма по массе, % |
Выход коагулюма по массе, % |
|||||
Время обработки |
Время обработки |
|||||
0 |
5 |
15 |
0 |
5 |
15 |
|
0,5 |
26 |
24 |
32 |
26 |
54 |
50 |
1 |
42 |
44 |
45 |
42 |
67 |
77 |
1,5 |
63 |
85 |
88 |
63 |
79 |
85 |
2 |
83 |
96 |
97 |
86 |
95 |
95 |
3 |
92 |
97 |
97 |
93 |
96 |
96 |
4 |
97 |
96 |
98 |
97 |
98 |
97 |
Продолжительность обработки латекса ультразвуком в течение пяти минут и более приводит к полному выделению каучука из латекса при меньшем расходе коагулянтов, чем при отсутствии физической обработки.
Это может быть объяснено тем, что в процессе ультразвуковой обработки происходит частичная десорбция стабилизатора с поверхности латексных частиц в водную фазу латексной системы. Это приводит к снижению заряда [16???] и толщины адсорбционного защитного слоя, что неизбежно приводит к слипанию латексных глобул по гидрофобизированным участкам на поверхности частиц, из-за уменьшения количества ПАВ на части их поверхности. Вследствие этого происходит частичная агломерация латексных глобул, что облегчает коагулирующее воздействие полимерного электролита и серной кислоты. Благодаря этому уменьшается расход коагулируемой системы на выделение каучука.
При этом имеет место эффект, связанный с интенсивным относительным движением латексных частиц под ультразвуковым воздействием.
Также происходит усиление процесса коагуляции за счет мостикообразования, свойственного полимерным флокулянтам.
Важным с практической точки зрения является и то, что обработка латекса магнитным полем не оказывает существенного влияния на молекулярную массу выделяемого каучука (табл. 3).
Таблица 3
Молекулярно-массовая характеристика бутадиен-стирольного каучука СКС-30 АРК
Показатель |
Среднечисловая молекулярная масса каучука СКС-30 АРК, Мn |
Без обработки |
87000 |
После ультразвуковой обработки |
86000 |
После магнитной обработки |
89500 |
Приготовленные из выделенной крошки каучука резиновые смеси после вулканизации подвергали физико-механическим испытаниям (ТУ 38.40355-99). Все полученные образцы соответствуют предъявляемым требованиям.
Выводы
1. Применение в качестве коагулянта ВПК-10 позволяет снизить попадание компонентов эмульсионной системы в сточные воды, что приводит к уменьшению загрязнения окружающей среды.
2. Обработка бутадиен-стирольного латекса ультразвуком в течение пяти минут и более позволяет снизать расход ВПК-10 с 3,5–4,0 до 1,7–3,0 кг/т каучука; аналогичные зависимости получены и с применением магнитной обработки.
3. Обработка ультразвуком и магнитным полем не оказывает влияния на молекулярную массу выделяемого каучука.
4. Все полученные образцы соответствуют предъявляемым требованиям.