По мере развития техники все большее число ответственных деталей машин и механизмов работает в сложных эксплуатационных условиях. Многие из этих деталей (роторы генераторов, лопатки турбин и др.) подвергаются действию переменных нагрузок [7, 9]. Их надежность в работе определяется, сопротивлением усталости [8, 9]. Разрушение изделия может произойти под действием напряжений, намного меньших пределов прочности и текучести, которые являются мерой прочности при статическом нагружении [6, 10].
На энергетических предприятиях большинство аварий и катастроф, связанных, как правило, с человеческими жертвами, также вызваны разрушительным действием вибрации [5]. Так, например, причиной аварии на Каширской ГРЭС в 2002 г. на турбогенераторе ст. № 3 с паровой турбиной К-300-240 и генератором ТВМ-300 послужила высокая продольная вибрация и крутильные колебания в результате разрушения бандажной втулки генератора и короткого замыкания в цепи статора [4]. Произошел разрыв валопровода турбины и генератора в восьми местах. Фрагменты корпусов цилиндров и роторов были заброшены на четырнадцатую отметку и за пределы турбинного цеха. Были полностью разрушены: паровая турбина, конденсатор, электрогенератор, повреждены фундаменты, несущие колонны, возник пожар, обрушилась кровля машинного зала. При этом восстановление последствий от вибрационных неполадок и катастроф на энергетических предприятиях занимает от 30 % и выше времени и затрат в общем балансе ремонтно–восстановительных работ [2]. Решению этой актуальной задачи и посвящен приведенный ниже материал.
Магнитная вибрация электрических машин
Во вращающихся электрических машинах, кроме механических вибраций, вызываемых неуравновешенностью масс и расцентровкой осей вращения роторов, при определенных условиях может возникнуть магнитная вибрация, как правило, оборотной частоты.
Источником магнитной вибрации являются вращающиеся переменные магнитные силы и моменты, действующие в воздушном зазоре между статором и ротором. По направлению эти силы разделяются на радиальные, тангенциальные и аксиальные (осевые).
Магнитная вибрация в электрических машинах возникает из-за возможных коротких замыканий в обмотках статора и ротора, на шинопроводах, в фазных проводниках электропередач, а также от несинхронных включений генераторов в сеть и несимметричных нагрузок потребителей. При коротких замыканиях взаимное притяжение ротора и статора становится неравномерным; при вращении точка наибольшего притяжения, перемещаясь по окружности, изменяет концентричность зазора, что создает магнитную асимметрию и связанную с этим вибрацию. При этом на ротор генератора действует переменный крутящий момент (момент сопротивления), достигающий при двухфазном коротком замыкании 10–12 кратного значения по отношению к номинальному вращающему моменту. Силы, вызываемые магнитной ассиметрией в электрических машинах, приводящие к повышенной вибрации, называются пандеромоторными.
Для исключения магнитной вибрации необходимо выполнять требования соответствующих правил технической эксплуатации электрических машин: поддерживать высокое сопротивление изоляции проводников, качественно выполнять крепление лобовых обмоток ротора бандажными втулками (капами), соблюдать концентричность воздушного зазора между статором и ротором, иметь надежную защиту от коротких замыканий и не допускать несимметричных нагрузок в электрической системе «машина – трансформатор – сеть» [4].
Нормы допускаемых вибраций и расцентровок турбоагрегатов
Работающий турбоагрегат всегда в какой-то степени вибрирует. Поэтому ПТЭ и ГОСТ 25364-97 предусматривают жесткие нормы на допустимый уровень вибрации. Вибрационное состояние турбоагрегата оценивается по наибольшему значению (амплитуде) виброскорости – vm, мм/с в вертикальном, поперечном и осевом направлениях.
Допускаемые значения вибрации [1].
1. Основное значение имеет вибрация оборотной частоты.
2. Длительная эксплуатация турбоагрегатов мощностью 200 МВт и более допускается при вибрации подшипниковых опор vm, не превышающей 2.8 мм/с, что эквивалентно размаху вибрации – двойной амплитуде смещения Am, равной 26 мкм.
3. Для турбогенераторов меньшей мощности с той же частотой вращения 3000 об/м допускается эксплуатация при вибрации подшипников равной 4.5 мм/с или при двойной амплитуде смещения равной 40 мкм.
4. При значениях вибрации свыше 7.1 до 11.2 мм/с работа агрегата ограничивается до семи суток.
5. При значениях вибрации выше 11,2 мм/с работа машины не допускается – должно произойти автоматическое отключение системой защиты.
6. При низкочастотной вибрации () при значениях превышающих 0,5 мм/с, должны приниматься меры по ее устранению. Дальнейшая эксплуатация не разрешается.
7. Приемка в эксплуатацию паровых турбин и электрических генераторов после монтажа допускается при значениях , не превышающих 2,8 мм/с и 4,5 мм/с после капитальных ремонтов.
Особенностью вибрации, вызванной расцентровками осей вращения многоопорных роторов, является ее местный характер: обычно увеличенная вибрация наблюдается у того корпуса подшипника, вблизи которого расположена муфта сцепления, соединившая роторы с расцентровкой. При этом сильно изнашивается баббитовые заливки вкладышей этого подшипника. Кроме того торцевая (угловая) расцентровка увеличивает осевую составляющую оборотной вибрации машин.
Допустимые значения торцевых (угловых) расцентровок полумуфт, мм, при D = 500 мм
Муфты сцепления |
Частота вращения роторов, с-1 |
|||
До 12,5 |
25 |
50 |
более 50 |
|
Жесткие |
0,08 |
0,06 |
0,04 |
0,02 |
Упругие |
0,10 |
0,08 |
0,06 |
0,04 |
зубчатые |
0,15 |
0,12 |
0,10 |
0,08 |
Допустимые значения торцовых (угловых) расцентровок полумуфт в соответствии со СНиП III-Г.10.2-62 приведены в таблице.
При диаметре муфты менее или более 500 мм указанные в таблице допустимые значения должны быть уменьшены или увеличены пропорционально отношению диаметров.
Параллельное смещение осей роторов (радиальная расцентровка полумуфт) должна быть не более 0,08; 0,07; 0,06 и 0,05 мм при частоте вращения роторов до 12,5; 25; 50 и более Гц соответственно [2]. При центровке валопроводов турбомашины необходимо учитывать тепловые расширения корпусов подшипников у разных цилиндров и возможные их проседания, например, от веса охлаждающей воды в конденсаторе паровых турбин. С учетом этих обстоятельств при монтаже ротор сознательно устанавливают с рассчитанными расцентровками для того, чтобы обеспечить центровку при переходе к рабочим условиям.
Отрицательные последствия вибрации машин
При наличии вибрации в колебательной системе агрегата двигатель затрачивает энергию не только на преодоление момента сопротивления приводного механизма Мс (н: тормозного момента на роторе турбогенератора) и момента сопротивления в подшипниках ротора, но и на преодоление неуравновешенной вибрационной силы в многоопорных энергетических машинах. Вибрация тормозит вращение и вибрационная мощность Pвб всегда является тормозящей, т.е. часть полезной мощности двигатель расходует на борьбу с собственной вибрацией. В результате уменьшается активная мощность на зажимах турбогенератора или увеличивается потребляемая мощность на зажимах электрического привода.
Выражение для определения вибрационной мощности отдельного ротора турбоагрегата можно представить в виде:
(1)
где Fвб – неуравновешенная вибрационная сила, Н;
vm – амплитуда виброскорости опорных подшипников ротора машины, м/с;
(2)
где m – масса ротора, кг;
2Am – двойная амплитуда смещения опорных подшипников, м;
ω – угловая частота вращения ротора, 1/с, Гц.
Тогда вибрационная мощность, т.е. мощность отбираемая вибрацией от полезной мощности, развиваемой ротором машины, может быть выражена зависимостью.
(3)
Знак (–) в формуле (5) означает – вибрационная мощность является тормозящей. Если валопровод машины состоит из нескольких роторов, то вибрационную мощность всего агрегата ∆Рвб можно рассматривать как сумму вибраций отдельных роторов.
(4)
В реальных условиях вибрационная мощность, особенно в агрегатах с повышенной вибрацией, может достигать значительных величин.
Расчеты, выполненные по формулам (1), (2), (3) и (4) показывают, что недовыработанная мощность турбогенератора ТГФ–120 с паровой турбиной Т–100–130 при оборотной частоте вращения n = 3000 об/м (ω = 314 1/с), номинальной амплитуде виброскорости vm = 4,5 мм/с массе роторов ВД, СД, НД, РГ и РВ равной 12, 25, 28, 30 и 2т соответственно, составляет величину 320 кВт, или 0,31 % от номинальной мощности 100 МВт.
Таким образом, работающая с любой нагрузкой паровая турбина Т–100–130 на борьбу с соответственной вибрацией ежемесячно отбирает у генератора ТГФ–120 электрическую энергию в количестве 270 000 кВт часов. Иными словами: вибрация – это своеобразный технический штраф за неуравновешенное состояние и несимметричную конструкцию вращающихся роторов машин величину которого можно оценить как для каждой машины, так и для предприятия в целом. Но, кроме постоянных экономических потерь вибрация, выходящая за рамки допустимого, снижает надежность работы: приводит задеванию и разрушению рабочих лопаток, концевых и диафрагменных уплотнений в проточных частях турбин, вызывает интенсивный износ и разрушение баббитовой заливки в опорных подшипниках, увеличиваются зазоры, нарушается гидродинамика масляного слоя. Ослабляются связи отдельных половин вкладышей и корпусов подшипников, а также фундаментной плиты.
Если фундамент недостаточно гасит передающиеся на него вибрации, то это приводит к неравномерной осадке фундамента, к взаимному перекосу опорных плит и, как следствие, к расцентровке валопровода и прогрессирующему нарастанию вибрации.
В результате интенсивная вибрация снижает экономичность машины, уменьшает КПД агрегата и приводит к затяжным, трудоемким восстановительным работам с динамической балансировкой роторов и ремонтом опорно–упорных подшипниковых опор турбины. На электрических станциях растут удельные затраты на производство электрической и тепловой энергии. Высокая вибрация представляет большую опасность и для электрического генератора, так как она может привести к смещению электрических обмоток, ослаблению концевых бандажных втулок, и, как следствие, к коротким замыканиям, механическим разрушениям и другим негативным последствиям.
При центровке электрических машин с приводным или исполнительным механизмами наиболее ответственным параметром является величина радиального зазора в воздушном пространстве между ротором и статором, концентричность которого может быть изменена на величину не более ± 10 % от расчетного, номинального значения.
В электрическом генераторе недопустимо высокая вибрация может возникнуть из-за несовершенной системы охлаждения, что приводит к тепловому стационарному прогибу ротора турбогенератора.
Особая опасность высокого уровня вибрации – это повышенная пожарная опасность при наличии больших количеств органических масел в системе смазки и регулирования турбоагрегатов, а также в агрегатах, перекачивающих взрывопожароопасные и токсичные продукты.
Вибрация увеличивает шум в производственных помещениях, приводит к трудноизлечимым вибрационным заболеваниям и механическим травмам, возникающих у обслуживающего персонала, особенно при ликвидации трудоемких вибрационных неполадок.
Выводы
Рассмотрена физика возникновения магнитной вибрации турбомашин. Описаны средства снижения вибрации в реальных условиях конкретного вида колебаний.
Перечислены основные негативные последствия повышенной вибрации паровых турбин и электрических генераторов, приводящие к трудоемким и затратным восстановительным работам на энергопредприятиях.
Приведенные формулы для расчета мощности отбираемой машиной на борьбу с собственной вибрацией, позволяют определить количество недовыработанной электрической энергии на энергопредприятии.
Показано, что вибрация основного оборудования турбоагрегатов снижает технико–экономические показатели и постоянно «отсасывает» получаемую прибыль на электрических станциях.