Научный журнал
Современные наукоемкие технологии
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 0,940

РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ ГИДРОСУППОРТА СТАНКА С ИНЕРЦИОННЫМ РЕГУЛЯТОРОМ

Кадыров И.Ш. 1 Темирбеков Ж.Т. 1 Турусбеков Б.С. 1 Давлятов У.Р. 2
1 Кыргызский национальный аграрный университет имени К.И. Скрябина
2 Кыргызский государственный технический университет имени И. Раззакова
В статье обоснована актуальность теоретических исследований объекта управления, имеющего безынерционный и инерционный регуляторы расхода, поступающего в рабочую полость цилиндра гидросуппорта. Известно, что для получения качественной продукции при металлообработке, в частности на токарном станке, следует автоматически поддерживать статическое значение сил резания, что позволяет обеспечить точности геометрических размеров детали, а также повышения стойкости инструмента, поскольку нагрузки на их меняются в небольших пределах. В связи с этим определенный интерес представляет теоретическое исследование объекта управления, имеющего безынерционный и инерционный регуляторы расхода, поступающего в рабочую полость цилиндра гидросуппорта. Методы исследования основаны на основных положениях теории автоматического управления, механики и гидроавтоматики. Представлены материалы по разработке математической модели объекта регулирования – гидросуппорта станка с инерционным регулятором, а также результаты исследований этой модели, приведена сравнительная оценка их статических и динамических характеристик, позволяющих производить расчеты массо-геометрических и режимных параметров, необходимых для проектирования и создания автоматических систем управления режимами работ токарного станка. Показана возможность путем варьирования значением коэффициента регулирования Кр получить различные законы переходных процессов: апериодический или колебательный, что позволяет инженерно-техническим работникам по представленным формулам в статье сделать правильный и рациональный выбор параметров, обеспечивающих высокие динамические качества: быстродействие и устойчивость системы. Представленные материалы могут быть использованы при автоматизации технологических процессов механической обработки изделий на станках.
инерционный регулятор
гидросуппорт
гидроавтоматика
токарный станок
дифференциальное уравнение
переходный процесс
устойчивость
1. Горбина Н.Н., Солопова А.С. Теория автоматического управления: учебник для вузов. 2-е изд., перераб. и доп. М.: Высшая школа. 2010. 201 с.
2. Кангин В.В., Козлов В.Н. Аппаратные и програм- мные средства систем управления. М.: Издательство Бином. Лаборатория знаний, 2010. 186 с.
3. Малышенко А М. Сборник тестовых задач по теории автоматического управления: учебник для вузов. СПб.: Издательство «Лань», 2016, 197 с.
4. Музылева И.В. Элементарная теория линейных систем в задачах и упражнениях: учеб. пособие. СПб.: Издательство «Лань», 2017. 428 с.
5. Башта Т.М. Гидравлические следящие приводы. Киев: Машгиз, 1990. 398 с.
6. Тумаркин М.Б. Гидравлические следящие приводы. М.: Машиностроение, 2001. 378 с.

Известно, что для получения качественной продукции при металлообработке, в частности на токарном станке, следует автоматически поддерживать статическое значение сил резания, что позволяет обеспечить точность геометрических размеров детали, а также повышения стойкости инструмента, поскольку нагрузки на их меняется в небольших пределах [1, 2].

В связи с этим определенный интерес представляет теоретическое исследование объекта управления, имеющего безынерционный и инерционный регуляторы расхода, поступающего в рабочую полость цилиндра гидросуппорта.

Цель исследования: разработка математических моделей разрабатываемых систем, анализ их динамических характеристик, влияние регуляторов на вид и длительность переходных процессов и возможность применения результатов математических исследований для практики.

Методы исследования основаны на основных положениях теории автоматического управления, механики и гидроавтоматики.

Результаты исследования и их обсуждение

Дифференциальное уравнение объекта регулирования гидросуппорта станка имеет вид

kadir01.wmf (1)

Дифференциальное уравнение инерционного регулятора представляется в виде [3, 4]:

kadir02.wmf (2)

где Т – постоянная времени регулятора, характеризующая инерционность регулятора.

Решая совместно уравнения (1) (2), найдем уравнения динамики всей системы регулирования.

Из уравнения (1) определяем

kadir03.wmf

тогда

kadir04.wmf (3)

Подставляя значения и в уравнение (1), получим

kadir05a.wmf

kadir05b.wmf (4)

Процесс регулирования складывается из переходного и установившегося процессов [3–5]:

kadir06.wmf (5)

Составим характеристическое уравнение автоматической системы:

kadir07.wmf (6)

Корни характеристического уравнения представлены в виде

kadir08.wmf (7)

Корни характеристического уравнения будут вещественными и отрицательными при условии:

kadir09.wmf (8)

Тогда переходный процесс будет происходить по апериодическому закону второго порядка, и он складывается из двух экспонентов с разными постоянными времени:

kadir10.wmf (9)

Либо

kadir11.wmf (10)

где

kadir12.wmf (11)

При этом из (11) видно, что Ta > Tb.

Следует отметить, что С1 и С2 произвольные постоянные, которые определяются из начальных условий.

Например,

?Sпер = C при t = 0;

kadir13.wmf при t = 0. (12)

Различные варианты апериодических переходных процессов представлены на рис. 1.

kadir1.tif

Рис. 1. Различные варианты апериодических переходных процессов

kadir2.tif

Рис. 2. Влияние Крег на характер переходного процесса

Предположим точка М (рис. 1) соответствует заданному значению ?Sпер = C при t = 0, а производная kadir14.wmf при t = 0, что соответствует кинематической скорости протекания процесса, а геометрически – наклону касательной положительной при, t = 0, то переходный процесс опишется кривой – 1, если она равна нулю – кривой 2, если она отрицательна, то кривыми 3 и 4. Математически эти кривые переходных процессов описываются формулой (10).

Коэффициенты С1 и С2 определяются следующим образом:

Продифференцируем уравнение (10) по времени:

kadir15.wmf (13)

Подставляя в формулы (10) и (13) значения С и D согласно (12) при t = 0, получим

kadir16.wmf (14)

Решая эти уравнения, совместно определяем значения С1 и С2.

kadir17.wmf (15)

Таким образом по формуле (10) с учетом значений постоянных в (15) строятся кривые апериодического процесса (рис. 1).

При этом граничный случай этого процесса будет, когда параметры системы удовлетворяют вместо условия (8) условию

kadir18.wmf (16)

При этом получается, что корни характеристического уравнения равны

kadir19.wmf (17)

И уравнение переходного процесса будет

kadir20.wmf (18)

Продифференцируем по времени (12):

kadir21.wmf (19)

Подставляя в уравнения (12) и (13) начальные условия (8), получим два уравнения:

kadir22.wmf (20)

Постоянные интегрирования равны

kadir23.wmf (21)

Исследуем влияние параметров регулятора на качество переходного процесса в системе автоматического управления.

При заданных значениях T0 и T будем менять коэффициент усиления регулятора Крег в пределах:

kadir24.wmf (22)

Видим, что при значениях близких к нулю, Ta ≈ T0 и Tb ≈ T, далее при увеличении Крег Ta уменьшается, а Tb возрастает, что можно наглядно показать на рис. 2.

Из (13) видно, что переходный процесс состоит из двух экспонент, постоянные времени которых Ta и Tb изменяются в пределах:

kadir25.wmf (23)

Из графиков наглядно видно, что вторая экспонента затухает быстрее, поскольку то есть в конце переходного процесса превалирует первая экспонента и по ней в принципе можно определить длительность переходного процесса, не производя решения дифференциального уравнения (13):

kadir26.wmf.

Следует отметить, что при C > 0 и D > 0 вторая экспонента вычитается из первой, что позволяет утверждать, что длительность переходного процесса будет несколько меньше, чем 3Та, но не вблизи точки М (рис. 2).

В связи с тем, что коэффициенты С1 и С2 согласно (15) увеличиваются, а в точке М длительность переходного процесса уже будет несколько выше, чем 3Тa.

При Та < Т0 присоединение регулятора к объекту уменьшает время переходного процесса за счет уменьшения инерционности объекта, а увеличение Крег в пределах (19) является весьма полезным.

С другой стороны, увеличение постоянного времени регулятора Т (рис. 2) неблагоприятно сказывается на быстроте затухания переходного процесса в системе, поскольку Та и Тb становятся больше.

Рассмотрим случай увеличения коэффициента усиления регулятора:

kadir27.wmf (24)

тогда корни характеристического уравнения (7) будут комплексными сопряженными:

kadir28.wmf (25)

где

kadir29a.wmf

kadir29b.wmf

При этих корнях переходный процесс будет колебательным:

kadir30.wmf (26)

Постоянные интегрирования С1 и С2 определяются из тех же начальных условий (10):

kadir31a.wmf

kadir31b.wmf (27)

При t = 0 получаем

kadir32a.wmf

kadir32b.wmf (28)

Решая совместно эти два уравнения, получаем

kadir33a.wmf

kadir33b.wmf (29)

Переходный процесс будет колебательным по синусоиде, амплитуда которой затухает по экспоненте с постоянным по времени Ta. Переходный процесс представлен на рис. 3.

kadir3.tif

Рис. 3. Переходный процесс kadir34.wmf

kadir4.tif

Рис. 4. График зависимости К0Крег от Т/Т0 , определяющий два вида переходного процесса

Длительность переходного процесса можно вычислить tn ≈ 3Ta. Величина Ta, согласно (25) не зависит от значения коэффициента усиления регулятора, это видно из графика (рис. 2) и формулы (16).

Следует отметить, что в автоматическом регуляторе постоянной времени Т не приносит эффекта при увеличении коэффициента усиления Крег сверх значений, представленного в выражении (16) с точки зрения быстроты затухания переходного процесса системы, но полезным с точки зрения уменьшения статической ее ошибки.

С другой стороны, возрастание постоянной времени регулятора Т замедляет затухание переходного процесса в системе автоматического управления – увеличение значения Тa.

Частота колебания регулируемой величины в переходном процессе, что видно из (19), повышается с увеличением Крег, а увеличение последнего, как это видно из (24), приводит к повышению колебательности системы регулирования, так как система успевает за время переходного процесса совершить необходимое количество колебаний.

Особый интерес представляет зависимость Крег на границе, апериодичности (16) от постоянного времени регулятора Т и параметров объекта (T0, K0), для этого построим график по формуле (16) К0Крег от величины T/T0 (рис. 4).

Из графика (рис. 4) при данном значении T/T0, если еще взять значение К0Крег выше кривой, то согласно (24), переходный процесс будет колебательным, ниже – апериодическим.

Графики, а также формулы (18) и (11) позволяют определить величины Ta, Tb, ω.

Следует заметить, что чем больше постоянная времени Т, тем скорее можно оказаться в колебательной зоне.

Кривая на рис. 4 помогает наглядному представлению о влиянии параметров регулятора на вид переходного процесса и осуществлению правильного выбора параметров системы.

Исследование установившегося процесса, например, при мгновенном скачко-
образном изменении нагрузки f(t) по закону, f(t) = const = f0.

В этом случае систематические свойства системы регулирования не зависят от Т-постоянной времени регулятора.

С другой стороны, для уменьшения статической ошибки системы регулирования, следует увеличивать Крег, но в то же время существует противоречие с требованием по качеству переходного процесса, по которому следует выбирать значения Крег вблизи величины (16).

Рациональное значение Крег следует находить с учетом статического и динамического расчетов системы регулирования.

Процесс регулирования системы складывается из переходного и установившегося режимов:

?S = ?Sпер + ?Sуст.

Если корни характеристического уравнения системы вещественны, как было отмечено выше, то имеем следующее решение [5, 6]:

kadir35.wmf (30)

Постоянные противоречия С1 и С2 определяются из условия, что до появления скачкообразной нагрузке система работала в установившемся режиме.

Имея в виду уравнения (1) (2) объекта и регулятора в этих условиях, получим

kadir36.wmf при t = 0. (31)

Продифференцируем по времени:

kadir37.wmf (32)

Используя (31) и (32) из уравнения (30),
получим

kadir38a.wmf kadir38b.wmf (33)

Решая совместно эти два уравнения, определяем, что

kadir39a.wmf

kadir39b.wmf (34)

Процесс регулирования для этого случая будет выражаться следующим уравнением:

kadir40.wmf (35)

Такая методика определения процесса регулирования применима при условии, когда kadir43.wmf

На рис. 5 построены графики переходного процесса объекта без регулятора с безынерционным регулятором и объекта инерционным регулятором при разных соотношениях Крег.

kadir5.tif

Рис. 5. Переходные процессы объекта без регулятора и с регуляторами безынерционным и инерционным

Анализ графиков, представленных на рис. 5, показывает, что в системе объект + инерционный регулятор с постоянного времени Т, можно добиться малой статической ошибки регулирования как в случае с безынерционным регулятором, но при этом переходный процесс будет колебательным.

Условия устойчивой работы объекта с инерционным регулятором:

1. Положительность коэффициентов дифференциального уравнения системы (15), то есть kadir41.wmf

2. При отрицательных знаках вещественных корней характеристического уравнения р1,2 < 0.

3. Если корни характеристического уравнения являются комплексными сопряженными, то вещественная ее часть должны быть отрицательной.

Выводы

1. Разработана математическая модель, описывающая динамические процессы объекта регулирования – гидросуппорта с инерционным регулятором (4), позволяющая теоретически произвести расчет массо-геометрические и режимные параметры системы.

2. Установлено, что в случае присоединения к гидросуппорту инерционный регулятор, переходный процесс может по двум экспонентам, что соответствует уравнению (19), а при Kрег > (T0 – T)2/4T0TK0 переходный процесс будет колебатель-
ным (рис. 3).

3. Разработанные математические модели, расчет и анализ, проведенные в статье, позволяют правильно и рационально спроектировать автоматическую систему регулирования подачи инструмента гидросуппорта токарного станка.


Библиографическая ссылка

Кадыров И.Ш., Темирбеков Ж.Т., Турусбеков Б.С., Давлятов У.Р. РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ ГИДРОСУППОРТА СТАНКА С ИНЕРЦИОННЫМ РЕГУЛЯТОРОМ // Современные наукоемкие технологии. – 2019. – № 11-2. – С. 280-285;
URL: https://top-technologies.ru/ru/article/view?id=37804 (дата обращения: 15.04.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674