Научный журнал
Современные наукоемкие технологии
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 0,899

ПРЕДПОСЫЛКИ РЕГУЛИРОВАНИЯ ТЕПЛОПРОВОДНОСТИ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ МОДЕЛИРОВАНИЯ ТЕПЛОВЫХ ПОТОКОВ И АДДИТИВНЫХ ТЕХНОЛОГИЙ

Павлов С.П. 1 Макарова В.М. 1 Злобина И.В. 1 Бекренев Н.В. 1
1 ФГБОУ ВО «Саратовский государственный технический университет имени Гагарина Ю.А.»
Выполнено моделирование распределения температурных полей в объеме полимерных композиционных материалов (ПКМ) при наличии неоднородностей макроструктуры и состава. Показано, что путем введения в основной материал структур с высокой теплопроводностью, определенным образом распределенных по сечению образца, на основе разработанной компьютерной модели, возможно значимо повысить теплопроводность такой композиционной структуры. При этом отдельное значение приобретают особенности конструкции изделия. Приведены примеры организации введения теплопроводных структур в основной объем материала для различных значений требуемой теплопроводности и конструктивных решений элементарной ячейки изделия с учетом доли вводимого в нее теплопроводного материала. Констатировано, что современные аддитивные технологии, в частности FDM, позволяют практически реализовать предлагаемый подход к регулированию теплофизических характеристик перспективных ПКМ, используемых в изделиях, работающих в условиях высоких градиентов температур: авиакосмическая техника, строительные и другие инженерные конструкции, предназначенные для эксплуатации в условиях высокогорья, Арктики и Антарктики. Применение данных технологий особенно важно с учетом имеющихся решений по топологической оптимизации прочностных характеристик полимерных композиционных материалов путем формирования в их объеме упрочняющих структур в соответствии с установленной закономерностью распределения полей напряжений от действия внешних нагрузок.
полимерные композиционные материалы
теплофизические характеристики
температурные градиенты
тепловое расширение
элементарная ячейка
профиль распределения компонента
1. Мирный М. Мировой рынок углепластиков достигнет отметки в $23 млрд к 2022 году [Электронный ресурс]. URL: http://mplast.by/novosti/2016-04-29-mirovoy-ryinok-ugleplastikov-dostignet-otmetki-v-23-mlrd-k-2022-godu/ (дата последнего обращения: 11.11.2018 г.)
2. Каблов Е.Н. Материалы и химические технологии для авиационной техники // Вестник Российской академии наук. 2012. Т. 82. № 6. С. 520–530.
3. Коваленко В.А., Кондратьев А.В. Применение полимерных композиционных материалов в изделиях ракетно-космической техники как резерв повышения ее массовой и функциональной эффективности. Аналитический обзор // Авиационно-космическая техника и технология. 2011. № 5. С. 14–20.
4. Каблов Е.Н., Старцев О.В., Деев И.С., Никишин Е.Ф. Свойства полимерных композиционных материалов после воздействия открытого космоса на околоземных орбитах // Все материалы. Энциклопедический справочник. 2012. № 11. С. 2–16.
5. Васильев В.В., Протасов В.В., Болотин В.В. Композиционные материалы: Справочник. М.: Машиностроение, 1990. 512 с.
6. Михайлин Ю.А. Конструкционные полимерные композиционные материалы. 2-е изд. СПб.: Научные основы и технологии, 2010. 822 с.
7. Bensoussan A., Papanicolaou G., Lions J.L. Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam, 1978. 387 р.
8. Guest J., Prevost J. Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. International Journal of Solids and Structures 2006. no 43. Р. 7028–7047.
9. Bendsоe M. P., Sigmund O. Topology Optimization. Theory, Methods and Applications. Berlin: Springer. 2003. 376 р.
10. Зленко М.А., Нагайцев М.В., Довбыш В.М. Аддитивные технологии в машиностроении. Пособие для инженеров. М.: ГНЦ РФ ФГУП «НАМИ», 2015. 220 с.
11. Holmes JR L.R., Riddick J.C. Research Summary of an Additive Manufacturing Technology for the Fabrication of 3D Composites with Tailored Internal Structure, JOM. 2014. no. 66. Р. 270–274. DOI: 10.1007/s11837-013-0828-4.
12. Ehrenberg R. The 3-D Printing Revolution Dreams Made Real One Layer at a Time. Science News. 2013. no. 183. P. 20–25.
13. Злобина И.В., Бекренев Н.В., Павлов С.П. Методика проектирования и изготовления деталей сложной формы с применением аддитивных технологий с применением неметаллических композиционных материалов с топологической структурой // Фундаментальные и прикладные проблемы техники и технологии. 2017. № 6. С. 69–75.
14. Злобина И.В., Бекренев Н.В., Павлов С.П. Исследование теплофизических характеристик стекло- угле пластиков и материалов, сформированных на основе аддитивных технологий по технологиям 3DP И FDM // Вектор науки Тольяттинского государственного университета. 2018. № 2. С. 26–33.
15. Злобина И.В., Бекренев Н.В., Павлов С.П. Исследование прочности модифицированных в СВЧ электромагнитном поле объектов 3D печати, армированных композитом с углеродным волокном // Вестник Южно-Уральского государственного университета. Серия: Машиностроение. 2017. Т. 17. № 4. С. 70–81.

Согласно материалам публичных аналитических докладов Сколковского Института Науки и Технологий 2014–2015 гг. [1, 2] основное внимание в ведущих промышленных странах уделяется нескольким направлениям научных исследований в интересах совершенствования производства: CAD/САМ/CAE технологии компьютерного проектирования сложных технических систем и процессов, робототехника, аддитивные технологии, композиционные материалы с иерархической структурой. При этом можно сделать вывод, что последние два направления тесно взаимосвязаны, поскольку наиболее эффективным методом формирования иерархической структуры материалов в условиях многономенклатурного производства, согласно разнообразным требованиям заказчиков, является послойное нанесение моно- или поликомпонентных составов (аддитивные процессы). При этом большое внимание уделяется качеству материалов.

За последние 20 лет объем применения композиционных, в том числе керамических, материалов в аэрокосмической технике увеличился более чем в два раза и данная динамика продолжает усиливаться [3–5]. В перспективе ожидается расширенное применение полимерных композиционных материалов (ПКМ) в ракетно-космической технике. Эта мировая тенденция характерна и для российской космической промышленности. В России разрабатывается и создается новое поколение космических аппаратов, в которых может быть заметно увеличена доля и роль композиционных и керамических материалов: перспективная экранновакуумная теплоизоляция с функцией микрометеороидной защиты для «Научно-энергетического модуля» МКС, лобовой теплозащитный экран для многоразового пилотируемого космического корабля «Федерация» и др. Планирующееся возобновление работ по исследованию и освоению Луны, в том числе с созданием на ее поверхности долговременных обитаемых модулей, также предполагает применение композиционных материалов со специальными функциональными свойствами.

При этом направления исследований в области материаловедения для космических аппаратов определяются спецификой долговременного нахождения данных объектов в открытом космическом пространстве под действием высоких градиентов температур, ионизирующих излучений, корпускулярных потоков и динамических нагрузок вследствие столкновений с микрометеоритами и «космическим мусором». В ходе исследований, выполненных космонавтами и астронавтами на долговременных космических станциях («Салют», «Скайлэб», «Мир», МКС), выявлены следующие основные факторы, влияющие на прочность и надежность конструкций из композиционных материалов: микроэрозионное повреждение поверхности и доотверждение связующего. При этом глубина повреждений и степень доотверждения зависят от состава и структуры материала, технологии его изготовления, исходной степени отверждения, максимальной температуры термоциклов и продолжительности экспонирования. Из-за температурного градиента по толщине образцов в процессе экспонирования формируется градиент физико-механических показателей ПКМ по толщине пластины. Вследствие упрочнения слоев гибридных композитов под воздействием термоциклов изменяется характер разрушения при изгибном нагружении [6]. Исследование поведения конструкций из ПКМ в космосе выявило особую важность их термостабильности в интервале температур 100…450 K в условиях периодических теплосмен, вызванных движением через теневые участки орбиты. Термостабильные конструкции создаются применением ПКМ с малыми значениями коэффициента линейного термического расширения (КЛТР) и высокой теплопроводностью. Считается [7], что для этой цели наилучшим образом подходят углепластики при условии значительного увеличения их теплопроводности в направлении больших ожидаемых температурных градиентов. Однако проблема создания теплопроводных композитных конструкций осложнена тем, что действительные физико-механические свойства ПКМ можно определить лишь после изготовления конкретной детали, т.е. в отвержденном состоянии. Кроме того, ПКМ отличаются значительной анизотропией физико-механических и теплофизических свойств, определяемой как схемами армирования, так и различием на порядок и более данных свойств для матрицы и наполнителя [8, 9]. Часто высокие физико-механические характеристики ПКМ слабо коррелируют с его теплофизическими свойствами, что создает трудности при разработке внешних конструкций как космических аппаратов, так и инженерных сооружений, предназначенных для эксплуатации в условиях Крайнего Севера, Антарктиды и высокогорья.

На основании изложенного, разработка методов регулирования теплофизических свойств полимерных композиционных материалов применительно к заданным условиям эксплуатации при сохранении высоких прочностных характеристик представляет собой актуальную научную и практическую задачу.

Для расчета эффективной термической проводимости элементарной периодической ячейки применяется метод гомогенизации, в котором гомогенизированные выражения могут быть получены из уравнений теплопроводности. По [10, 11] эффективная теплопроводность может быть определена в следующей форме:

pavl01.wmf (1)

с локальной координатой y.

Если обозначить pavl02.wmf [11], то, аналогично схеме, используемой для интерполяции локального тензора жесткости, характеристическая функция Ti – является решением уравнения теплопроводности:

pavl03.wmf (2)

Тогда эффективный тензор теплопроводности (1) может быть записан в виде

pavl04.wmf (3)

Для двумерной ячейки тензор эффективной термической проводимости представляется как

pavl05.wmf (4)

Таким образом, для измерения общей эффективной проводимости материала может служить выражение

pavl06.wmf (5)

Граничные условия для определения pavl07.wmf приведены на рис. 1.

pavl1a.tif pavl1b.tif pavl1c.tif

а) б) в)

Рис. 1. Элементарная периодическая ячейка композита: а) область топологической оптимизации Y и граничные условия для задач теплопроводности (б), (в)

Граничные условия для pavl08.wmf:

pavl09.wmf

Граничные условия для pavl10.wmf:

pavl11.wmf

Материалы и методы исследования

На сегодняшний день, метод гомогенизации [10] является эффективным подходом к вычислению глобальных физических свойств композита, таких как объемный модуль жесткости или термическая проводимость.

Определившись с упругой и термической гомогенизацией, представляется возможность поставить задачу оптимизации, которая позволит определить оптимальную топологию для сочетания упругой и термической задач. Такие задачи особенно интересны, когда упругие и термические свойства материалов сильно конкурируют друг с другом, и оптимальные топологии для отдельных задач оптимизации сильно отличаются друг от друга. Чтобы решить поставленную задачу, необходимо одновременно учитывать как упругие, так и термические свойства материала.

Предположим, что элементарная периодическая ячейка разбита на конечные элементы и каждому элементу присваивается переменная плотность, ρn(n = 1, N). Следуя закону SIMP [12], в котором в качестве переменной управления в задаче оптимизации выступает искусственно введённая плотность ρ(x), коэффициент теплопроводности:

pavl12.wmf. (6)

Здесь k0, k1 – коэффициенты термической проводимости материалов соответственно.

Показатель степени p ≥ 1 является фактором штрафа и увеличение р приводит к более четкому решению. Показатель степени p обычно выбирают равным p = 4 или p = 5 [12].

Обычно задачи оптимизации на максимум для удобства расчетов сводятся к задачам на минимум.

Целевую функцию определим в виде

pavl13.wmf. (7)

Здесь kb – коэффициент теплопроводности, используемый для нормировки. Второе слагаемое является функцией штрафа для исключения эффекта «шахматной доски» в процессе оптимизации, h0 первоначальный размер сетки и hmax – текущий размер сетки. Величина 0 ≤ q ≤ 1 – заданный коэффициент, позволяющий сбалансировать функцию цели и функцию штрафа друг с другом. Следует отметить, что поиск минимума функции (8) соответствует задаче поиска максимума функции, стоящей после множителя (q – 1) за счет того, что q – 1 ≤ 0 [13].

Ограничения для искусственно введенной плотности ρ(x) выберем в виде

pavl14.wmf (8)

pavl15.wmf (9)

В формуле (8) A обозначает общий объем материала оптимизируемой области Y в элементарной периодической ячейке при ρ(x) = 1 и γ обозначает процент экономии материала с параметрами.

Поскольку для получения численного решения жесткость не должна полностью исчезать, положим, в неравенстве (9) δ равной некоторой достаточно малой величине, чтобы избежать сингулярности начальной матрицы жесткости при оптимизации.

Результаты исследования и их обсуждение

Рассмотрим элементарную ячейку композита из двух материалов, коэффициенты термической проводимости которых соответственно равны k0 = 10, k1 = 100. Оптимальную микроструктуру композита будем строить для различных значений от γ = 0,2 до γ = 0,9, γ – объемная доля материала с коэффициентом теплопроводности k1 = 100.

Тогда коэффициент теплопроводности в произвольной точке микроструктуры определяется выражением

pavl16.wmf. (10)

В таблице приведены оптимальные топологии, значения эффективной теплопроводности при различных значениях γ.

Эффективная теплопроводность композита в зависимости от доли компонента с повышенной теплопроводностью в общем объеме

γ

0,2

0,3

0,4

0,5

 

pavT1a.tif

pavT1b.tif

pavT1c.tif

pavT1d.tif

tr(k)/2

19,9672

26,2511

33,2693

41,0807

γ

0,6

0,7

0,8

0,9

 

pavT1e.tif

pavT1k.tif

pavT1l.tif

pavT1m.tif

tr(k)/2

49,8471

59,7396

70,202

84,2823

pavl2.tif

Рис. 2. Теоретическая зависимость теплопроводности ПКМ в зависимости от % % доли компонента с условной теплопроводностью γ = 100

Построенная по результатам моделирования зависимость представлена на рис. 2.

Анализ графика (рис. 2) позволяет сделать вывод, что введение в структуру основного материала дополнительного компонента с высокой теплопроводностью, распределенного с учетом рациональной топологии, позволяет существенно повысить данную теплофизическую характеристику. Например, размещение 20 % от общего объема дополнительного компонента приводит к увеличению теплопроводности в 2 раза, а замена 80 % материала на теплопроводный компонент вызывает семикратное увеличение теплопроводности. С учетом возможных различий в механических характеристиках компонентов использование топологического структурирования ПКМ материалом с отличающейся от основного теплопроводностью позволяет путем введения относительно малой его доли, не вызывающей значимого изменения механических характеристик, существенно изменить в требуемом направлении теплофизические свойства. Таким образом, появляется инструмент направленного регулирования теплофизических свойств ПКМ с учетом их прочности и других механических
свойств.

В то же время представленные выше результаты моделирования элементарных ячеек композиционного материала с внутренними структурами повышенной теплопроводности дают представление о высокой сложности формы данных структур, что требует оценки практической реализуемости предлагаемого подхода в серийной технологии.

В последнее время получают все большее распространение в различных областях производства аддитивные технологии прямого формирования трехмерных объектов любой сложности формы на основе разработанной компьютерной твердотельной модели [10–12]. Среди различных методов данного технологического направления технология FDM позволяет формировать композиционные изделия из различных полимерных материалов в соответствии с заданной структурой.

Ранее нами были получены положительные результаты по формированию упрочняющей топологии в виде армированного углеродными волокнами композита в объектах трехмерной печати путем выкладки армирующего материала в соответствии с полученным на основе компьютерного моделирования распределением полей напряжений. При этом полости для заполнения, имеющие сложную форму, были получены в процессе печати основы из пластика ABS [13]. Изучены теплофизические и механические свойства таких объектов, в том числе после дополнительного электрофизического воздействия [14, 15].

На основании изложенного представляется возможным предложить следующий алгоритм формирования структуры ПКМ с оптимизированными прочностными и теплофизическими характеристиками:

– на основе известных требований к изделию проектируется его конструкция;

– на основе конструкции формируется твердотельная модель изделия;

– с учетом распределения и расчетных численных эксплуатационных нагрузок моделируется распределение полей внутренних напряжений для последующего топологического упрочнения материалов с высокими модулем упругости и пределом выносливости и статической прочности;

– с учетом известных температурных градиентов и требуемой теплопроводности моделируется внутренняя структура из материала с высокой теплопроводностью;

– разрабатывается обобщенная твердотельная модель изделия, учитывающая упрочняющую топологию и распределение теплопроводных структур;

– подбираются соответствующие назначению основной конструкционный, упрочняющий материалы и материал с повышенной теплопроводностью;

– методом аддитивных технологий на основе многокомпонентной трехмерной печати формируется изделие.

Выводы

На основе математического и компьютерного моделирования получены топологии распределения дополнительного компонента с различным процентным содержанием в полимерном композиционном материале, позволяющие изменять его теплофизические характеристики, в частности теплопроводность.

Теоретически установлено, что в зависимости от доли содержания дополнительного компонента: (20–90) % условная теплопроводность композита повышается соответственно от 2 до 8 раз, что позволяет путем незначительных изменений содержания теплопроводного компонента в широких пределах направленно регулировать теплопроводность изделия из ПКМ.

Анализ современных технологий формирования изделий из полимерных и композиционных материалов позволяет сделать вывод о целесообразности применения технологий трехмерной печати для практической реализации рассмотренного в данной статье подхода. Применение данных технологий особенно важно с учетом имеющихся решений по топологической оптимизации прочностных характеристик полимерных композиционных материалов путем формирования в их объеме упрочняющих структур в соответствии с установленной закономерностью распределения полей напряжений от действия внешних нагрузок.

Сочетание упрочняющей и теплофизической оптимизации структуры ПКМ позволит сформировать заданный условиями эксплуатации объекта комплекс свойств, что особенно важно для динамичных объектов, находящихся в условиях высоких температурных градиентов, например, космических аппаратов, а также инженерных конструкций и транспортной техники для зон Крайнего Севера и Антарктиды.

Исследования выполнены при поддержке гранта РФФИ № 17-03-00720 «Методология оптимизационного микроконструирования композиционных материалов для объектов сложной формы повышенной динамической прочности, послойно формируемых электротехнологическими методами».


Библиографическая ссылка

Павлов С.П., Макарова В.М., Злобина И.В., Бекренев Н.В. ПРЕДПОСЫЛКИ РЕГУЛИРОВАНИЯ ТЕПЛОПРОВОДНОСТИ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ МОДЕЛИРОВАНИЯ ТЕПЛОВЫХ ПОТОКОВ И АДДИТИВНЫХ ТЕХНОЛОГИЙ // Современные наукоемкие технологии. – 2018. – № 12-2. – С. 337-342;
URL: https://top-technologies.ru/ru/article/view?id=37343 (дата обращения: 18.09.2021).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074