На сегодняшний день довольно быстрыми темпами осуществляется развитие городов на всей территории Российской Федерации. Повсеместно осуществляется реновация имеющегося жилищного фонда, находящегося в аварийном или ограниченно работоспособном состоянии [1, 2]. Здания и сооружения, входящие в данный фонд, нуждаются в реконструкции, реставрации, модернизации и современной адаптации с использованием современных инъекционных технологий без ударных, вибрационных и механических воздействий [3, 4]. Причиной резкого ухудшения технического состояния зданий главным образом являются два фактора. Первый связан с серьезными нарушениями эксплуатации зданий: нарушениями температурно-влажностного режима, перегрузками несущих конструкций здания, не согласованными изменениями объёмно-планировочных и конструктивных решений здания и т.п. Второй фактор заключается в повышении уровня грунтовых вод, систематическими протечками инженерных коммуникаций, неисправной отмостки здания и ливнёвой канализации, что приводит к значительному увлажнению грунтового основания под зданием, существенному ухудшению его физико-механических характеристик, разрушению и потере устойчивости фундаментов, а также к неравномерным осадкам здания [5, 6].
В свою очередь, одним из наиболее эффективных способов усиления фундаментов и химического закрепления глинистого грунтового основания с высоким уровнем подземных вод является манжетная технология [2, 3, 6]. Отличительной особенностью технологии является управляемая поинтервальная по глубине инъекция раствора в режиме образования и распространения в грунтовом массиве гидравлических разрывов «гидроразрывов». Инъекция раствора осуществляется через перфорированную трубу, отверстия которой закрываются резиновыми манжетами, выступающими в роли обратного клапана «манжетная колонна». Манжетные колонны устанавливают в предварительно пробуренные скважины, заполняя пространство между перфорированной трубой и стенками скважины глиноцементной суспензией. После твердения глиноцементного раствора образуется грунтоцементная прослойка «обойма», связывающая трубу с грунтом и препятствующая выходу раствора во время инъекции по контуру между трубой и грунтом. Закрепление грунта осуществляется путем разрыва обоймы на заданном уровне скважины под давлением от 5 до 10 МПа [2, 6].
Цель исследования
Определить состав инъекционного раствора, удовлетворяющего требованиям по качественному и эффективному закреплению грунтового основания с использованием манжетной технологии инъекции раствора в режиме образования гидравлических разрывов.
Методы исследования. Для определения состава раствора и его основных технологических и прочностных характеристик в лаборатории кафедры геотехники на основании результатов научно-практических исследований растворов, проводимых в НИИОСП им. Н.М. Герсеванова, ВНИИГ им. Б.Е. Веденеева, представленных в работах Адамовича, Алексеева, Богова, Булатова, Воронкевича, Ибрагимова, Ржаницына и др. [2, 5, 6], были выбраны основные реагенты для приготовления растворов: цемент марки М400, бентонит марки ПБМБ, жидкое стекло (силикат натрия) с изменением процентного содержания водоцементного отношения В/Ц: 0,6–1,0. Цемент марки М400 – цемент общестроительного назначения, отличающийся грубой дисперсностью, показатель размера фракции d95 = 70–80 микрон (диаметр частиц, меньше которого в цементе содержится 95 процентов частиц), удельная поверхность 2500 см2/г. Бентонит марки ПБМБ – вследствие тонкости и коллоидных свойств минеральных частиц увеличивает стабильность и пластичность раствора. Под стабильностью раствора понимается приведение его в устойчивое состояние – агрегирование твердой фазы за счет гидрофильности глинистых частиц, предотвращение расслоения и уменьшения водоотделения в спокойном состоянии и уменьшение водоотдачи при инъекции в грунт. Также в состав бентонита входит кальцинированная сода (углекислый натрий) Nа2СO3 – позволяет связывать ионы кальция в растворах, содержащих гипс, ангидрит, цемент. Жидкое стекло (силикат натрия) – общая химическая формула имеет вид Na2ОхnSiО2, где n – число молекул кремнезема. Водный раствор силиката натрия представляет собой вязкую жидкость светло-желтого цвета, плотность которой составляет 1300–1800 кг/м3. Добавка жидкого стекла способствует ускорению времени схватывания раствора и увеличению его прочности. Водоцементное отношение (В/Ц) – составляет 0,6–1,2 исходя из требований к подвижности растворов, что приводит к большому избытку воды (по сравнению с обычно применяемыми в строительной практике) и, как следствие, снижению прочности получаемого цементного камня. Кроме того, неизбежны явления водоотделения и расслоения раствора, а также значительного отжатия воды под давлением инъекции.
Всего было изготовлено 24 образца с проведением испытаний: по определению растекаемости, водоотделения, прочности на сжатие и растяжение (рис. 1).
Определение характеристик растворов
Рис. 1. Блокировка пакера в результате осаждения цементных частиц
В соответствии с требованиями нормативных документов ГОСТ [7] растекаемость определялась при помощи конуса АзНИИ. По итогам первой серии экспериментов было выделено 8 образцов, соответствующих требованиям по показателю растекаемости – от 17 до 22 см.
В первой серии экспериментов определялась растекаемость инъекционных растворов по конусу АзНИИ (ГОСТ [7]), результаты которых представлены в таблице.
Далее проводились исследования по определению водоотделения в соответствии с требованиями ГОСТ [7] каждого из восьми образцов, результаты которых представлены в таблице. Данный фактор является очень важным, так как от него зависит формирование твёрдого остатка (седиментация) цементного камня при твердении.
При этом также следует учитывать увеличение процента водоотделения в процессе инъекции раствора под давлением [1–2]. Выбор состава с минимальным значением водоотделения до 3 % позволит сформировать в грунтовом массиве гидроразрывы, полностью заполненные раствором (без пустот и полостей), которые следует рассматривать как армирующие и уплотняющие глинистый грунтовый массив.
Для определения прочности на сжатие и растяжение при раскалывании было изготовлено 8 образцов цилиндрической формы d = 70 мм, h = 70 мм. Испытания проводились на гидравлическом прессе ПГМ-500МГ4 в соответствии с требованиями ГОСТ 310.4-81. «Цементы. Методы определения предела прочности при изгибе и сжатии» (введ. 30.06.1983). Прочность на сжатие раствора должна составлять от 6 до 8 МПа, на растяжение при раскалывании 0,6–0,8 МПа [2].
Совмещая между собой гистограммы табл. 1 по требуемым значениям характеристик водоотделения, прочности на сжатие и растяжение для дальнейших экспериментальных исследований было выбрано два состава, № 4 и № 24.
Дальнейшие исследования проходили на строительной площадке в г. Тюмени. Составы растворов использовались для устройства перфорированных инъекционных свай длиной до 6 м. Инъекция осуществлялась при помощи универсального шнекового растворонасоса по манжетной технологии с использованием гидравлического пакера. При времени инъекции состава № 4 до 4 часов и давлении до 1,8 МПа произошла блокировка пакера вследствие осаждения цементных частиц (рис. 1). Причиной осаждения является отсутствие связности между частицами цемента и воды, а также влияния жидкого стекла, ускоряющего время схватывания. При использовании состава № 24 блокировка пакера не происходила даже при более длительном беспрерывном времени инъекции до 6 часов и меньшем значении давления – до 1,0 МПа.
Для определения качества закрепления грунтового основания при помощи перфорированных инъекционных свай по манжетной технологии с использованием гидравлического пакера производилась экскавация грунта на всю глубину расположений свай с ручной доработкой в месте расположения гидроразрывов (рис. 2). На рис. 2, а, наглядно показано отличие цветового оттенка сформированных гидроразрывов состава № 4, имеющего светло-серый цвет, от состава № 24, имеющего светло-коричневый цвет из-за добавки бентонита.
Рис. 2. Результаты экскавации перфорированных инъекционных свай для оценки качества закрепления пылевато-глинистого грунтового основания: а – образцы составов № 4 и № 24, б – закрепление основания составом № 2 4, в – закрепление основания составом № 4; А – гидроразрывы тип «А», Б – гидроразрывы тип «Б»
На рис. 2, б, показано распространение гидроразрывов в грунте во время инъекции состава № 24. Объём инъекции раствора на один инъектор составлял 1000 л при давлении 0,8–1,0 МПа. Хорошо прослеживается распространение инъекционного раствора в массиве грунта на расстояние до 3 м от инъектора, что говорит о высокой проникающей способности данного состава. Средняя толщина гидроразрывов составляет 2 см. Также следует отметить большое количество мелких гидроразрывов толщиной от 2 до 5 мм.
На рис. 2, в, показано распространение гидроразрывов в грунтовом массиве во время инъекции состава № 4. Максимально возможный объём инъекции раствора на один инъектор составлял 400 л при давлении 1,2–1,8 МПа. По результатам экскавации, сформированные гидроразрывы в основном локализуются возле инъектора, радиус распространения составляет не более 0,5 м. Также на рис. 2, А–Б более детально показана текстура образующихся в грунтовом массиве гидроразрывов. И.И. Сахаров выделяет три характерные текстуры гидроразрывов при инъекции раствора в грунт [8]:
- Тип «А» – сплошные растворные вертикальные прожилки-линзы толщиной раскрытия 40–130 мм были обнаружении при инъекции состава № 24.
- Тип «Б» – многочисленные тонкие трещины, слабо заполненные раствором, с толщиной менее 10 мм были обнаружении при инъекции состава № 4.
- Тип «В» – тонкие трещины, разрыхляющие грунтовый массив без присутствия раствора – не были обнаружены.
Следует отметить, что для закрепления и уплотнения пылевато-глинистого грунтового массива оптимальной является текстура «Тип А» поскольку её можно рассматривать как армирующий элемент, текстура типа «Б» менее благоприятна [9–10].
Также на рис. 3 показаны геометрические параметры гидроразрывов свай с повторной инъекцией раствора и различным шагом отверстий перфорации: 30, 40 и 50 см.
Рис. 3. Характер распространения гидроразрывов с повторной инъекцией раствора: а – при шаге отверстий 30 см, б – при шаге 40 см, в – при шаге 50 см
При шаге отверстий перфорации – 30 см наблюдалось самое эффективное закрепление грунтового массива с образованием как вертикальных, так и горизонтальных гидроразрывов, при шаге 40 см образовывались только вертикальные гидроразрывы, при шаге 50 см – происходило образование одиночных, не связанных между собой гидроразрывов.
Следует объяснить логическое происхождение данных результатов. В начальный момент инъекции раствора в грунтовом массиве образовывались гидроразрывы, развивающиеся в вертикальной плоскости перпендикулярно инъектору: при шаге отверстий 50 см – на значительные расстояния от инъектора; 40 см – частично распространялись от инъектора и незначительно пересекались между собой; 30 см – в основном пересекались между собой и локализовались возле инъектора. При последующей (повторной) инъекции новые гидроразрывы: при шаге отверстий 50 см – свободно распространялись на значительные расстояния; 40 см – объединялись между собой и образовывали сплошную вертикальную стенку; 30 см – распространялись в горизонтальном направлении (горизонтальные гидроразрывы толщиной 5–20 мм) из-за переуплотнения грунтового массива вертикальными гидроразрывами и перераспределения напряжений в зоне инъекции.
Выводы
1. В результате проведения испытаний по определению растекаемости, водоотделения, прочности на сжатие и растяжение было определено два состава инъекционного раствора с заданным процентным соотношением основных реагентов по химическому закреплению грунтов с использованием манжетной технологии:
– водоцементный состав № 4 с водоцементным соотношением по массе равным 0,6 и добавлением 1 % жидкого стекла;
– глиноцементный состав № 24 с водоцементным соотношением по массе равным 1 и добавлением 5 % бентонитовой глины марки ПБМБ и 3 % жидкого стекла.
2. Добавка глины в составе № 24 повышает стабильность раствора, увеличивает его подвижность и проникающую способность, уменьшает расслоение, но при этом резко снижает прочность, данный недостаток компенсируется добавкой жидкого стекла.
3. В сравнении двух растворов по результатам полевых исследований следует использовать состав № 24, поскольку он позволяет выполнять инъекцию раствора по манжетной технологии с использованием гидравлического пакера в более стабильном режиме с требуемым радиусом распространения гидроразрывов (до 3 м от инъектора) для качественного закрепления пылевато-глинистого грунтового основания.
Библиографическая ссылка
Самохвалов М.А., Ашихмин О.В., Цернант А.А. ОПРЕДЕЛЕНИЕ СОСТАВА ИНЪЕКЦИОННОГО РАСТВОРА ДЛЯ ПОВЫШЕНИЯ КАЧЕСТВА ЗАКРЕПЛЕНИЯ ГРУНТОВ ПО МАНЖЕТНОЙ ТЕХНОЛОГИИ // Современные наукоемкие технологии. – 2018. – № 5. – С. 139-144;URL: https://top-technologies.ru/ru/article/view?id=37005 (дата обращения: 03.12.2024).