Большинство современных производств, занимающихся автоматизированным проектированием, в качестве конечного продукта, реализуют 2D документацию, как правило, в бумажной форме, которая впоследствии используется для изготовления, в том числе и на оборудовании с числовым программным управлением. Такое несоответствие принципов автоматизации с реальностью снижает качество продукции и отрицательно влияет на внедрение новых технологий. Реализация принципа сквозного проектирования, являющегося основополагающим при создании цифрового производства, базируется на использовании трехмерных моделей на всех стадиях технологической подготовки. Это позволяет исключить ошибки неизбежно возникающие при переводе информации из одного формата в другой, и снижает влияние человеческого фактора.
Также в настоящий момент становится крайне актуальным управление жизненным циклом сложных инженерных объектов. На Западе проблемой необходимости сопровождения сложных изделий вплоть до утилизации, ведутся уже давно. Большой вклад в эту область внесли военные, сформулировавшие в 80-е годы концепцию CALS (Continuous Acquisition and Life Cycle Support, Непрерывная поддержка закупок и жизненного цикла) – непрерывная информационная поддержка жизненного цикла продукции. Причиной развития CALS технологии стало то, что разработчики современных средств автоматизации формировали свои собственные модели, которые нередко оказывались несовместимыми у партнеров по производству и эксплуатации техники. Поскольку термин CALS всегда носил военный оттенок, в гражданской сфере широкое распространение получила концепция Product Life Management (PLM) или управление жизненным циклом. PLM - это стратегический бизнес-подход и интегрированное решение для коллективной разработки, управления, распространения и использования информации в рамках предприятия и между его партнерами от момента формирования концепции до вывода продукции с рынка, объединяющие людей, процессы, бизнес-системы и интеллектуальные активы [1].
Сквозное цифровое проектирование позволяет снизить себестоимость продукции, повысить эффективность и качество, обеспечить сквозное управление проектом, например, в условиях групповой работы обеспечить соответствие ГОСТ / ЕСКД, ЕСТД, ИСО. По сути это совокупность программного обеспечения и методик его применения для создания на предприятии единого информационного пространства по управлению жизненным циклом изделия в цифровом формате по безбумажным технологиям.
Основными преимуществами являются:
• автоматически корректируемая объектно-ориентированная 3D модель, доступная для всех приложений;
• повышение качества конструирования и достоверности передаваемой в производство информации;
• возможность электронного моделирования процессов формирования блоков;
• сокращение сроков и снижение стоимости вывода на рынок новой продукции, снижение стоимости самой продукции и повышение эффективности ее эксплуатации;
• обеспечение полноты, согласованности, контролируемой доступности информации о конфигурации, эксплуатации, состоянии объекта в рамках предприятия;
• обеспечение информационной поддержки принятия управленческих решений с учетом всех этапов жизненного цикла продукции;
• поддержка основных бизнес-процессов предприятий и их интеграция между этапами жизненного цикла и функциональными рабочими местами.
Состав сквозной технологии:
• 3D модель, включая линейные статические, тепловые, усталостные расчеты и визуализацию;
• модельные испытания, включая доработку геометрии с учетом испытаний, параметрическое задание технологических данных;
• модель техпроцесса - управляющая программа для станка с ЧПУ, подготовка технологических карт, добавление деталей в корзину заказа, расчет материальных и трудовых затрат, параллельное проектирование сложных и сквозных техпроцессов в реальном времени, формирование заказов, поддержка актуальной технологической информации);
• опытный образец;
• испытания опытного образца;
• документация для серийного производства;
• справочная документация – электронный документооборот, управление изменениями, поддержка актуальной технологической информации, поиск деталей по каталожным спискам.
На сегодняшний день в организациях и на предприятиях широко применяются современные CAD/CAM системы и различного рода приложения на ее базе. Из числа универсальных, так называемых «тяжелых» CAD/CAM системы: CATIA, EDS Unigraphics, Euclid, Soid Works, Parametric Technology и др. В классе систем ERP/MRP используются Baan, SAP/R3, Symex, Oracle Application, а в классе PDM — Windchill, Microsoft Project, Time Line, Artemis Project, Prestige, Primavera Project Planner, Cresta Project Manager и др. В разделе «технология моделирования композитов» существуют различные программные продукты. Это FiberSim (Vistagy / Siemens PLM Software), Digimat (e-Xstream / MSC Software Corp.), Helius (Firehole Composites / Autodesk), ANSYS Composite PrepPost, ESAComp (Altair Engineering) и др. [2] Практически все специализированное программное обеспечение, применяемое при конструировании армированных композиционных материалов различных компаний, имеет возможность интеграции с системами СAD высокого уровня – Creo Elements/Pro, Siemens NX, CATIA. В настоящее время на предприятиях, создающих композитные изделия, применяют в основном ручной труд формовщиков, вследствие чего при расчете изделия необходимо делать запас на возможную ошибку. Для облегчения ручной выкладки ткани и сокращения отходов применяются раскройные машины для автоматической резки ткани/препрега, лазерные проекторы LAP и LPT для контурной проекции при выкладке на технологическую оснастку, выполненную роботизированными фрезерными комплексами по 3D модели. Используя модуль лазерного проецирования, имеется возможность автоматически генерировать данные для проецирования непосредственно из 3D-модели композитного изделия. Такая схема работы значительно сокращает временные издержки, увеличивает эффективность процесса, снижает вероятность дефектов и ошибок, делает управление данными проще.
Система позволяет при проектировании осуществлять интеграцию 2D и 3D проектирования, получать необходимые данные, например, осуществлять весовые расчеты, расчеты предельной и усталостной прочности, пассивной безопасности, расчет трудоемкости изготовления, формировать данные для машин с ЧПУ, выпускать отчеты, изометрические данные, сборочные чертежи, рабочие схемы со спецификациями и др. [3 - 5]
Однако при внедрении сквозного проектирования, кроме первоначальных затрат, есть другая, не финансовая, проблема - острый дефицит высококвалифицированных специалистов, владеющих современными технологиями, способных разрабатывать и внедрять конкурентоспособную технику и технологии [6 - 8]. Необеспеченность квалифицированными кадрами сегодня является одним из главных препятствий. Основным противоречием российского высшего технического образования сегодня является несоответствие профессиональных компетенций, приобретаемых выпускниками технических вузов в процессе обучения, возросшим требованиям высокотехнологичных предприятий, проектных и научных организаций. В результате при достаточно большом и часто избыточном количестве выпускников инженерных направлений и специальностей спрос со стороны бизнеса на высококачественных специалистов далеко не удовлетворен. Учитывая, что в современном производстве появился термин «опережающие технологии», под которыми понимают принципиально новые технологии, обеспечивающие лидерство на мировом рынке, новое инженерное образование должно обгонять «опережающие технологии». Все это диктует необходимость подготовки кадров способных обеспечить инновационные преобразования в технике, технологии и организации процесса переработки предмета труда, многократный рост производительности труда.
В НГТУ им. Р.Е. Алексеева студенты в ходе обучения получают подробную информацию и изучают практическое применение существующих и хорошо известных технологий быстрого прототипирования. В ходе курсовых и дипломных работ они выполняют сквозное проектирование по схеме «идея – 3D-модель – расчет – прототип – готовое изделие». При этом направление сквозного цифрового проектирования только развивается.
Рис. 1. Трехмерная модель спортивного автомобиля класса «Формула Студент» |
Рис. 2. Модельная оснастка для создания аэродинамического обвеса |
Рис. 3. Модель поворотного кулака спортивного автомобиля |
Рис. 4. Коромысло подвески |
Рис. 5. Спортивный автомобиль класса «Формула Студент» НГТУ им. Р.Е. Алексеева |
Одним из примеров могут служить работы, выполняемые в рамках международного технического проекта «Formula SAE», инженерных соревнований по созданию спортивных автомобилей, проводимых Ассоциацией инженеров-механиков (ImechE), обществом автомобильных инженеров США (SAE) и Ассоциацией инжиниринга и технологий (I&T), входящие в Серию Студенческих Инженерных соревнований (Collegiate Design Series) SAE [9].
В рамках реализации данного проекта в Нижегородском государственном техническом университете им. Р.Е. Алексеева были изготовлены различные элементы спортивного автомобиля с использованием технологий сквозного цифрового проектирования и применения цифровых технологий производства и быстрого прототипирования. Проект был построен на основе взаимодействия студентов, магистров, аспирантов-участников проекта «Formula SAE» с преподавательским составом факультетов и кафедр НГТУ им. Р.Е. Алексеева, а также взаимодействия с ведущими предприятиями Нижнего Новгорода.
Проектирование и оценка прочности и безопасности элементов конструкции спортивного автомобиля класса «Формула Студент» НГТУ им. Р.Е. Алексеева (Рис. 1, 5) проводились на основе применения расчетных методов и программных пакетов конечно-элементного моделирования. Полученные результаты послужили основой для реализации последующих этапов сквозного цифрового проектирования и материализации элементов спортивного автомобиля.
Примерами выполненных работ с использованием сквозного цифрового проектирования являются полученные элементы модельной оснастки для изготовления стеклопластиковых панелей аэродинамического обвеса (Рис. 2). Для производства модельной оснастки аэродинамического обвеса спортивного автомобиля класса «Формула Студент» применялся промышленный робот «KUKA» с установленным фрезерным комплексом для пространственной фрезерной обработки заготовок «KUKA Milling». Данный комплекс предназначен для решения различных задач, связанных с изготовлением производственной оснастки из легкообрабатываемых материалов: древесина, пластик, гипс.
Ключевым этапом в используемой технологии и технологическом оборудовании является создание трехмерной компьютерной (CAD) модели будущего изделия, совместимой с программным обеспечением фрезерного комплекса. Данный этап позволяет с минимальными затратами на ресурсы и небольшой трудоемкостью процесса создать трехмерную модель изделия, оценить эргономику и дизайн, провести компьютерный анализ аэродинамических и прочностных характеристик, а также при необходимости внести корректирующие изменения в конструкцию, нацеленные на увеличение функциональности рабочей модели.
Следующим этапом работы являлась механическая обработка заготовки по компьютерной математической модели. В результате проведенных работ, полученная модельная оснастка послужила пуансоном для ручной выкладки стеклотканью (армирующим материалом), предварительно пропитанной полиэфирной смолой. Таким образом, при помощи технологий сквозного цифрового проектирования и быстрого прототипирования оказывается возможным в достаточно короткие сроки и с минимальными ресурсными и трудовыми затратами получить изделие с достаточной точностью, погрешностью в 0,1 мм.
Для изготовления отдельных элементов конструкции применялись технологии цифрового производства с изготовлением прототипов деталей на 3D принтере из пластиковых материалов. Были изготовлены детали коромысел передней и задней подвески, модель поворотного кулака, главного тормозного цилиндра, крепление цифрового сервопривода системы переключения скоростей и др. (Рис. 3). Полученные модели на всех этапах проектирования позволили детально представить компоновочную структуру узлов спортивного автомобиля и оценить функциональные кинематические возможности.
На основе полученных трехмерных моделей элементов спортивного автомобиля были выполнены литейные песчаные формы, используемые для заполнения алюминиевым сплавом. Полученные заготовки подвергались дополнительной механической обработке и интегрировались в конструкцию спортивного автомобиля (Рис. 4).
Заключение
Комплексный подход с использованием современного оборудования позволяет подготовить квалифицированных специалистов для промышленности, которые на практике осваивают полный цикл изготовления сложных изделий, способных после окончания института сразу приступить к работе с современным наукоемким оборудованием и передовыми технологиями [10].
Библиографическая ссылка
Чернышов Е.А., Гончаров К.О., Романов А.Д., Кулагин А.Л. ОПЫТ ВНЕДРЕНИЯ ТЕХНОЛОГИИ СКВОЗНОГО ЦИФРОВОГО ПРОЕКТИРОВАНИЯ В РАМКАХ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЫ СТУДЕНТОВ И АСПИРАНТОВ // Современные наукоемкие технологии. – 2014. – № 4. – С. 92-96;URL: https://top-technologies.ru/ru/article/view?id=34569 (дата обращения: 21.11.2024).