Введение
В Советском Союзе в 50-х годах прошлого столетия реактивные двигатели для авиамоделей получили некоторое распространение в результате создания пульсирующих воздушно-реактивных двигателей (ПуВРД). Такие микродвигатели в нашей стране строились энтузиастами-авиамоделистами, и в дальнейшем было организовано промышленное производство и их продажа в специализированных магазинах для юных техников (реактивные микродвигатели РАМ-1, РАМ-2). Применение ПуВРД позволило отечественным авиамоделистам-спортсменам установить ряд мировых рекордов скорости полета авиамодели с реактивным двигателем, например, мировой рекорд скорости авиамодели с реактивным двигателем, установленный мастером спорта СССР И.И. Иванниковым.
Несмотря на конструктивную простоту ПуВРД, они имели и ряд существенных недостатков, например, очень громкий, режущий слух звук, разогрев камеры сгорания и резонансной трубы до цвета белого каления. Все это не позволяло использовать такой двигатель для ряда моделей самолетов без специальных мер защиты. Высокочастотные, при высоких температурах, знакопеременные нагрузки на клапаны приводили к их малому ресурсу. Они быстро прогорали, несмотря на то, что выполнялись из лучших сортов жаростойких сталей. Клапаны ПуВРД превратились в слабое звено двигателя. Вскоре производство авиамодельных ПуВРД в СССР из-за большой пожароопасности и высокого уровня шума, создаваемого ими, было прекращено. Летающие модели с применением ПуВРД были исключены из соревнований всех рангов.
Бесклапанные ПуВРД из-за их формы, габаритов, проблем обеспечения охлаждения и сложности организации горения в малом объеме не всегда компоновались на моделях, строившихся авиамоделистами. Производство таких двигателей было отработано некоторыми научно-исследовательскими институтами и предприятиями авиационной промышленности для применения на беспилотных летательных аппаратах с дозвуковой скоростью полета класса мини и более тяжелых классов.
Таким образом, возникла задача создания компактного реактивного двигателя для авиамоделей-копий и позднее для микро-БЛА, имеющего более продолжительное время работы, чем у пороховых ракетных двигателей, но более дешевого в производстве, чем турбореактивный микродвигатель. Такая задача решалась авиамоделистами Общества «Ювенал» города Таганрога в рамках инициативной программы «Рубикон». Исследования и эксперименты с реактивными двигателями разных принципов работы привели к конструкции авиамодельных реактивных двигателей, описание которых предлагается.
Конструкция микродвигателя №1
Данный тип реактивного двигателя с термоокислителем (РДТО – 1) является несложным реактивным двигателем, работа которого обеспечивается сгоранием в специальной камере углеводородного горючего в присутствии окислителя. Окислитель (кислород) вырабатывается в двигателе посредством термического разложения перманганата калия при температуре выше +250 градусов.
2КМnО4 = К2МnО4 + МnО2 + О2
При этом запас перманганата калия находится в замкнутом объеме либо внутри камеры сгорания, либо снаружи, охватывая её.
Выделенный из перманганата калия кислород поступает в камеру сгорания, смешивается с горючим (бензином, керосином) и обеспечивает его непрерывное сгорание. Продукты сгорания при определенном давлении и высокой температуре разгоняются в сопле двигателя и с высокой скоростью покидают сопло, развивая необходимую тягу.
Конструктивно данный тип микродвигателя состоит из: газогенератора кислорода 1, охватываемого камерой сгорания 2, которая отделена от окружающего пространства внешним теплоизолирующим контуром 3, он одновременно является эжекторным усилителем тяги. Внешний теплоизолирующий контур 3 образован внешней оболочкой двигателя 4 и кожухом камеры сгорания 5, установленными с расчетным кольцевым зазором посредством центрирующих винтов 10. Герметичная оболочка 6 совместно со съемным стекателем 7 образует газогенератор 1. Cъемный стекатель 7 оснащен автоматическим регулятором 8 сброса давления кислорода на случай его внезапного увеличения.
Камера сгорания 2 плавно переходит в реактивное сопло 9. Она оснащена стабилизаторами пламени 11. В камеру сгорания 2 направлены форсунки подачи горючего 12 из кольцевой проточки 13, в которую, в свою очередь, вставлен жиклер подачи горючего 14 по трубопроводу 15. В передней части камеры сгорания 2 закреплена головка 16, скрепленная герметично винтами с коллектором подачи горючего и окислителя 17.
Выход из газогенератора 1 сообщается с коллектора подачи горючего и окислителя 17 через фильтрующую сетку 18, которая предотвращает попадание мелкой пыли перманганата калия в коллектор, защищая форсунки 12 подачи кислорода от их засорения.
Пусковое термическое разложение перманганата калия для запуска реактивного двигателя осуществляется нагревом перманганата калия при температуре немногим более +250 градусов специальным электронагревательным пусковым устройством 19. Устройство 19 на резьбе герметично установлено по центру головки 16 и своим нагревательным элементом погружено в перманганат калия, содержащийся в газогенераторе 1 .
К устройству 19 во время запуска двигателя подводится электропитание по клеммам 20.
Подготовка, пуск и работа реактивного двигателя с термоокислителем РДТО – 1.
При подготовке двигателя к работе он переводится в вертикальное положение реактивным соплом вверх. Откручиваются винты крепления съемного стекателя 7, и он отстыковывается от газогенератора 1. Внутренняя полость газогенератора 1 заправляется порцией перманганата калия. Съемный стекатель 7 устанавливается на свое место, стыкуясь с газогенератором 1, и обеспечивается герметичное соединение. После заправки перманганатом калия двигатель переводится в горизонтальное положение. Трубопровод 15 соединяется с бачком для горючего. К бачку для горючего подсоединяется система поддавливания (вытеснения).
При пуске двигателя убеждаются в герметичности всех соединений, подсоединяются клеммы питания специального электронагревательного пускового устройства 20 к источнику электропитания. После подачи электропитания на клеммы электронагревательное пусковое устройство 19 нагревается, вызывая начало термического разложения перманганата калия и получение таким образом кислорода для запуска реактивного двигателя. Жиклером подачи горючего 14 устанавливается режим пусковой подачи горючего в камеру сгорания 2 и, при соблюдении всех правил по технике безопасности и противопожарной защиты, специальной зажигалкой или факелом производится розжиг горючекислородной смеси на срезе сопла 9. Воспламенившаяся горючекислородная смесь из сопла 9 пробивается в камеру сгорания 2 и удерживается в своем положении стабилизаторами пламени 11. При наличии устойчивого горения в камере сгорания 2 источник электропитания отсоединяется от клемм питания 20 специального электронагревательного пускового устройства.
Работа двигателя сопровождается интенсивным выделением продуктов сгорания, которые при своем расширении развивают большие давления и скорости. Скорость истечения продуктов сгорания и их масса прямо пропорциональна развиваемой реактивной тяге двигателя. Установившееся в камере сгорания 2 пламя от сгорания горючего в среде окислителя обладает высокой температурой. Пламя, с одной стороны, разогревает газогенератор 1, который производит кислород, с другой стороны, разогревает кожух камеры сгорания 5, нагрев которого нежелателен, и потому через внешний теплоизолирующий контур 3 он экранирован внешней оболочкой двигателя 4.
Струя выхлопных газов, устремляющаяся из камеры сгорания 2 в сопло двигателя 9, создает на срезе сопла пониженное давление и эжектирует из внешнего теплоизолирующего контура 3 воздух, который охлаждает камеру сгорания 2 и создает дополнительную силу тяги. Таким образом, внешний теплоизолирующий контур 3, кроме снижения температуры, повышает тягу двигателя за счет протекания через него дополнительного количества эжектируемого воздуха.
При непредвиденном росте давления кислорода, вырабатываемого в газогенераторе 1, выше некоторого расчетного значения срабатывает автоматический регулятор 8 сброса давления кислорода. Излишки кислорода выбрасываются за срезом сопла 9 из дюзы регулятора 8, который расположен в вершине конуса съемного стекателя 7.
В головке 16 посредством резьбового соединения закреплен жиклер подачи горючего 14, который имеет связь с кольцевой проточкой коллектора 17.
Режим подачи горючего в коллектор 17 устанавливается иглой жиклера 14.
Режим подачи кислорода в коллектор 17 заранее оттаррирован.
Конструкция микродвигателя №2
Другая конструкция реактивного двигателя с термоокислителем (РДТО – 2) отличается от предыдущей измененной компоновкой основных узлов при полном сохранении принципа работы двигателя. Газогенератор в данном двигателе охватывает часть камеры сгорания и начало выхлопной трубы, образуя герметичный объем.
Конструктивно данный микродвигатель состоит из: камеры сгорания 1, к которой пристыкован газогенератор 2, подающий окислитель по трубопроводу 3, а горючее по трубопроводу 4 в камеру сгорания 1. Продукты сгорания из двигателя выбрасываются в атмосферу из выхлопной трубы 5, оканчивающейся срезом реактивного сопла. Спереди камеры сгорания винтами прикреплена головка, состоящая из собственно головки с форсунками 6 и крышки 7. В центре крышки 7 на резьбе установлен жиклер двигателя 8, имеющий трубку впрыска 9 и регулировочную иглу 10. Количество горючего устанавливается иглой жиклера 10. Трубка впрыска 9 имеет резьбу, позволяя её приближать или удалять от форсунки 11, что необходимо при настройке системы питания двигателя на оптимальное соотношение горючего и окислителя при их подаче в камеру сгорания 1.
Пусковое термическое разложение перманганата калия для запуска реактивного двигателя осуществляется нагревом перманганата калия специальным электронагревательным пусковым устройством 12. Устройство 12 на резьбе герметично установлено в газогенераторе 2 и своим нагревательным элементом погружено в перманганат калия, содержащийся в газогенераторе 2.
К устройству 12 во время запуска подводится электропитание по клеммам 13. Винты с гайками 14 соединяют одновременно головку 6 с крышкой 7 и стабилизатор пламени 15. Жиклер после всех регулировок и настроек двигателя зажимается контргайкой 16. Рабочий процесс в двигателе начинается путем зажигания горючекислородной смеси электрической свечой зажигания 17. Микродвигатель оснащен автоматическим регулятором 18 сброса давления кислорода на случай его внезапного увеличения.
Подготовка, запуск и работа
Заправка микродвигателя РДТО – 2 производится через отверстие демонтированного специального электронагревательного пускового устройства 12 путем засыпки перманганата калия через воронку в газогенератор 2. После операции заправки специальное электронагревательное пусковое устройство 12 устанавливается на место с максимальным обеспечением герметичности. Подсоединяется проводка к специальному электронагревательному пусковому устройству 12 и к электрической свече зажигания 17.
После подачи электропитания на клеммы 13 электронагревательное пусковое устройство 12 нагревается, вызывая начало термического разложения перманганата калия и получение таким образом кислорода для запуска реактивного двигателя. Вырабатываемый в газогенераторе 2 кислород по трубопроводу 3 подается в камеру головки 6 тангенциально и, закручиваясь вместе с горючим, впрыскивается в камеру сгорания 1. Избыточное давление горючего создается путем его поддавливания газом из баллона для зажигалок. Иглой жиклера подачи горючего 10 устанавливается режим пусковой подачи горючего в камеру сгорания 1 и, при соблюдении всех правил по технике безопасности и противопожарной защиты, подается питание на электрическую свечу зажигания 17. В камере сгорания 1 происходит розжиг горючекислородной смеси.
Пламя в камере сгорания удерживается стабилизатором пламени 15. При наличии устойчивого горения горючекислородной смеси в камере сгорания 1 выделяется большое количество продуктов сгорания, которые при своем расширении развивают большие скорости и давления, создавая тягу микродвигателя.
Рабочий режим подачи горючего в головку 6 устанавливается иглой жиклера 10.
Режим подачи кислорода в форсунку 11 регулируется изменением расстояния трубки впрыска 9 от форсунки 11.
Выводы
При сравнении описанных реактивных микродвигателей проявляются достоинства и недостатки обеих конструкций. Так, микродвигатель РДТО – 1 имеет более низкую рабочую температуру внешней поверхности, что позволяет рассматривать вопросы его применения для более широкой номенклатуры технических средств. Он более защищен от внешнего воздействия и последствий внутренних неконтролируемых процессов резкого увеличения давления в газогенераторе. Однако за эти достоинства приходится расплачиваться увеличением массы двигателя.
Микродвигатель РДТО – 2 более легкий, но передняя часть камеры сгорания имеет непосредственный высокотемпературный контакт с внешней средой. Требуется более эффективная теплоизоляция при установке двигателя на объект. Газогенератор, кроме своего корпуса, ничем не защищен.
Библиографическая ссылка
Воронков Ю.С., Воронков О.Ю. РАЗРАБОТКИ РЕАКТИВНЫХ МИКРОДВИГАТЕЛЕЙ ПО ПРОГРАММЕ «РУБИКОН» // Современные наукоемкие технологии. – 2014. – № 4. – С. 49-53;URL: https://top-technologies.ru/ru/article/view?id=34560 (дата обращения: 21.11.2024).