Научный журнал
Современные наукоемкие технологии
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 0,940

Размерные эффекты и физические свойства минералов

Портнов В.С. 1 Юров В.М. 2 Исагулов А.З. 1 Сергеев В.Я. 1 Орынгожина С.Е. 1
1 Карагандинский государственный технический университет
2 Карагандинский государственный университет им. Е.А. Букетова
В рамках неравновесной статистической термодинамики установлена связь между физическими свойствами минералов и их размером. На основе этой связи получены формулы для расчета поверхностного натяжения минералов по экспериментальным зависимостям магнитных, электрических, тепловых и других свойств минералов от их размера. Из приведенных результатов нашего исследования следует, что размерные эффекты (и внутренний и внешний) описываются одной универсальной зависимостью, позволяющей определять важнейшие характеристики наноминералов. Предложенные в работе методы определения поверхностного натяжения минералов позволяют определять работу разрушения минералов и, таким образом, научно прогнозировать условия переработки минерального сырья при добыче полезных ископаемых.
неравновесная термодинамика
размерные эффекты
поверхностное натяжение
физические свойства минералов
1. Сергеев Г.Б. Нанохимия. – М.: КДУ, 2007. – 336 с.
2. Погосов В.В. Введение в физику зарядовых и размерных эффектов. – М.: Физматлит, 2006. – 328 с.
3. Портнов В.С. Термодинамический подход к задачам геофизического опробования железорудных месторождений. – Караганда: КГТУ, 2003. – 212 с.
4. Яворский В.В., Юров В. М. Прикладные задачи термодинамического анализа неравновесных систем. – М.: Энергоатомиздат, 2008. – 338 с.
5. Наноминералогия. Ультра- и микродисперсное состояние минерального вещества / Под ред. Н.П.Юшкина и др. – СПб.: Наука, 2005. – 581 с.
6. Конеев Р.П. Наноминералогия золота. – СПб.: Дельта, 2006. – 218 с.
7. Минералогическая интервенция в микро- и наномир: Материалы Международного семинара. – Сыктыквар: ИГ Коми НЦ УрО РАН, 2009. – 548 с.
8. Портнов В.С., Юров В.М. Связь магнитной восприимчивости магнетитовых руд с термодинамическими параметрами и содержанием железа // Известия вузов. Горный журнал, 2004. – № 6. – С. 122–127.
9. Вонсовский В.С. Магнетизм. – М.: Наука, 1971. – 1032 с.
10. Нагата Т. Магнетизм горных пород. – М.: Мир, 1965. – 345 с.
11. Шолпо Л.Е. Использование магнетизма горных пород для решения геологических задач. – Л.: Недра, 1977. – 182 с.
12. Кудрявцева Г.П. Ферримагнетизм природных оксидов. – М.: Недра, 1988. – 232 с.
13. Гохштейн А.Я. Поверхностное натяжение твердых тел и адсорбция. – М.: Наука, 1976. – 256 с.
14. Buffat Ph., Borel J.-P. Size effect on the melting temperature of gold particles // Phys. Rev. A. – 1976. – Vol. 13. – P. 2287–2298.
15. Shi F.G. Size dependent thermal vibrations and melting in nanocrystals // J. Mater. Res., 1994. – Vol. 9. – P. 1307–1313.
16. Суздалев И.П., Суздалев П.И. Нанокластеры и нанокластерные системы. Организация, взаимодействия, свойства // Успехи химии. – 2001. – т. 70. – С. 203–240.
17. Ролдугин В.И. Физикохимия поверхности. – Долгопрудный: Издательский Дом «Интеллект», 2008. – 568 с.
18. Kotlyar V.G., Zotov A.V., Saranin A.A, et al. // Phys. Rev. B. – 2002. – Vol. 66, № 16. – P. 165–169.
19. Бинс К., Лауренсон П. Анализ и расчет электрических и магнитных полей. – М.: Энергия, 1970. – 376 с.
20. Юров В.М., Ещанов А.Н., Кукетаев А.Т. Способ измерения поверхностного натяжения твердых тел // Патент РК № 57691. Опубл. 15.12.2008. – Бюл. № 12.
21. Юров В.М., Портнов В.С., Пузеева М.П. Способ измерения поверхностного натяжения и плотности поверхностных состояний диэлектриков // Патент РК № 58155. Опубл. 15.12.2008. – Бюл. № 12.
22. Юров В.М., Портнов В.С., Пузеева М.П. Способ измерения поверхностного натяжения магнитных материалов // Патент РК № 58158. Опубл. 15.12.2008. – Бюл. № 12.
23. Юров В.М., Портнов В.С., Ибраев Н.Х., Гученко С.А. Поверхностное натяжение твердых тел, малых частиц и тонких пленок // Успехи современного естествознания. – 2011. – № 11. – С. 55–59.

Эксперименты и теоретические исследования показывают, что размер частицы является активной переменной, определяющей вместе с другими термодинамическими параметрами состояние системы.

Принято различать два типа размерных эффектов [1]: собственный, или внутренний, и внешний. Внутренний размерный эффект связан со специфическими изменениями в объемных и поверхностных свойствах как индивидуальных частиц, так и получаемых в результате их самоорганизации ансамблей. Внешний эффект является размерно зависимым ответом на внешнее поле, не зависимым от внутреннего эффекта.

Внешние размерные эффекты в твердых телах возникают тогда, когда геометрический размер их становится сравним с одним из параметров, характеризующих движение квазичастиц (волна де Бройля, длина свободного пробега и др.). Размерные эффекты проявляются в зависимости кинетических коэффициентов электропроводности, теплопроводности и др. от размера образца при наложении внешнего поля (электрического, магнитного и т.д.).

Размерным эффектам в твердых телах посвящено большое количество работ (см., например [1, 2]). В настоящей работе мы рассмотрим размерные эффекты в минералах и их анализ на основе развитого нами термодинамического подхода [3, 4].

Надо отметить, что исследования размерных эффектов в минералах непосредственно связаны с возникновением нового направления в минералогии – наноминералогии [5–7]. При этом наноминералы рассматриваются как продукт природных нанотехнологий, происходящих в наномасштабе.

Неравновесная термодинамика элементарных возбуждений в твердых телах

Подсистему магнитных, электрических диполей, дефектов и других элементарных возбуждений в твердом теле (минерале) или поверхностном слое (дислокации, поры и т.д.) будем рассматривать как систему невзаимодействующих частиц, погруженную в термостат. Квантовые переходы, обусловленные взаимодействием дефектов с термостатом, будут диссипативными (с вероятностью Р) в отличие от взаимодействия с внешним полем (с вероятностью F). Диссипативные процессы приводят к тому, что вторичное поле (отклик системы) всегда меньше первичного, вызывающего образование дефектов.

Поскольку подсистема дефектов обменивается с термостатом только энергией, то соответствующий им ансамбль частиц будет каноническим. В этом случае выражение для статистической энтропии имеет вид:

Eqn94_1.wmf (1)

где fi – функция распределения; k – постоянная Больцмана.

Дифференцируя (1) по времени и преобразуя, получим:

Eqn95.wmf (2)

где Pij – вероятность перехода из начального i (с энергией Ei) в возбужденное состояние j (с энергией Ej).

Для диссипативных процессов принцип детального равновесия имеет вид:

Eqn96.wmf (3)

где gi, gj – статистические веса для уровней Ei и Ej.

Опуская промежуточные вычисления (подробнее см. в [8]), получим:

Eqn97.wmf (4)

где ΔS – изменение энтропии в диссипативном процессе; Em – среднее значение энергии основного состояния дефектов; τ – время релаксации.

Для функции отклика Ф системы на внешнее поле имеем:

Eqn98.wmf (5)

где Р – вероятность диссипативного процесса и определяется (4); F определяет вероятность перехода в возбужденное состояние за счет первичного внешнего поля, причем F = 1/τр, где τр – время жизни возбужденного состояния. С учетом (4) выражение (5) примет вид:

Eqn99.wmf (6)

Размерные эффекты в магнитных свойствах минералов

Вопросы магнетизма малых ферромагнитных частиц исследуются уже давно [9]. Важность учета размера зерен ферромагнитных минералов в геофизических исследованиях подчеркивалась в работах [10–12]. В настоящее время эти вопросы не потеряли актуальность. Основным механизмом, приводящим к зависимости магнитной восприимчивости от размера частиц ферромагнетика считается переход многодоменных частиц в однодоменные. Критический размер (радиус d) однодоменной частицы, выше которого она становится двух- или многодоменной, определяется из энергетических соображений и обратно пропорциональна квадрату намагниченности насыщения Js [9]:

Eqn100.wmf (7)

где С = 0,5; 1; 2 для простой кубической, объемоцентрированной и гранецентрированной решетки, соответственно; А – параметр обменной энергии; NR – размагничивающий фактор вдоль малой оси частицы.

В случае больших энергий анизотропии вместо (7) используется формула [10-11]:

Eqn101.wmf (8)

где w – плотность поверхностной энергии доменов.

Беря в качестве функции отклика в (6) магнитную восприимчивость и приводя (6) к линейному виду, получим:

Eqn102.wmf (9)

где N – число магнитных диполей; G0 – термодинамический потенциал Гиббса ферромагнетика.

Изменение радиуса зерна ферромагнетика также приводит к изменению давления Р на межфазной границе, описываемое уравнением Кельвина

Eqn103.wmf (10)

где r – радиус зерна; s – межфазное поверхностное натяжение; ϑ – молярный объем; P0 – давление над плоской поверхностью; R – газовая постоянная.

Поскольку Eqn104.wmf, то вдали от точки Кюри из соотношений (9) и (10) следует

Eqn105.wmf (11)

Разлагая экспоненту в ряд и ограничиваясь первыми двумя членами, получим:

Eqn106.wmf (12)

где Eqn107.wmf (13)

Удельная намагниченность магнетитов Соколовского, Сарбайского месторождений исследовалась нами на вибрационном магнитометре. Размер зерна магнетита определялся на микроскопе МИМ-8. Результаты показаны на рис. 1. В координатах æ/æ0 ~ 1/r экспериментальная кривая спрямляется в соответствии с (12), давая значение d = 0,36 мкм.

pic_47.tif

Рис. 1. Зависимость относительной магнитной восприимчивости от диаметра зерна магнетита

Для магнетита ϑ = 44,5 см3/моль, и из соотношения (8) для поверхностного натяжения s получаем: s = 10,07⋅103 эрг/см2. Расчет плотности поверхностной энергии для магнетита [9] по формуле (8) (Js = 4,9∙105 А/м дает w = 10,1⋅103 эрг/см2, что совпадает с полученной нами величиной s.

Экспериментальное определение поверхностного натяжения твердых тел затруднено тем, что их молекулы (атомы) лишены возможности свободно перемещаться. Исключение составляет пластическое течение металлов при температурах, близких к точке плавления [13].

Как следует из приведенных выше результатов, поверхностное натяжение магнитных материалов экспериментально можно определять по зависимости æ = æ(r) и по формуле (13). Рассмотренный выше размерный эффект относится к внешним размерным эффектам.

Температура плавления наночастиц

Изменение температуры плавления металлов в зависимости от размера частиц относится к внутреннему размерному эффекту. С уменьшением размера частиц температура плавления может изменяться на несколько сотен градусов и больше.

Зависимость температуры плавления от размера частиц рассматривается на основе двух моделей: одна из них использует представления термодинамики [14], другая – колебания атомов [15]. Подробное рассмотрение термодинамического подхода приведено в обзоре [16].

Экспериментальная кривая зависимости температуры плавления частиц золота от их размера и приведенная в работе [14], с большой точностью описывается уравнением, подобным (12):

Eqn108.wmf (14)

где Т0 – температура плавления массивного образца, d определяется (13).

При температуре Т = 1040 °С величина поверхностного натяжения золота, вычисленная по нашей формуле (13), оказалась равной: s = 1,312 Дж/м2. Эта величина незначительно отличается от величины поверхностного натяжения, полученной в методе «нулевой ползучести» s = (1,37 ± 0,15) Дж/м2 [17].

В работе [18] для нанокристаллов алюминия получена экспериментальная кривая, аналогичная кривой работы [14] для золота. Расчет величины поверхностного натяжения по нашей формуле дал следующий результат: s = 1,070 Дж/м2, что также близко к значению s = (1,14 ± 0,2) Дж/м2 для алюминия, полученного в методе «нулевой ползучести».

Размерные эффекты, электрические и теплофизические свойства минералов

Если воспользоваться аналогией потенциальных скалярных полей (см., например, [19]), то нетрудно получить:

Eqn109.wmf (15)

Eqn110.wmf (16)

Eqn111.wmf (17)

где Ω – электропроводность; ε – диэлектрическая проницаемость; λ – коэффициент теплопроводности малых частиц минерала. Здесь d определяется соотношением (13).

Обобщенная зависимость физического свойства минерала от его размера показана на рис. 2.

Во всех случаях экспериментальное определение зависимости физического свойства минералов от его размеров позволяет определить поверхностное натяжение минерала. Последнее играет важную роль в процессах переработки минерального сырья – измельчение при рудоподготовке (работа диспергирования А = σ·S, S – площадь поверхности частицы); в процессах обогащения – флотация, магнитная сепарация и т.д.; в процессах металлургического передела и многих других [20–23].

pic_48.tif

Рис. 2. Обобщенная зависимость физического свойства минерала от его размера

Заключение

Из приведенных выше результатов нашего исследования следует, что размерные эффекты (и внутренний и внешний) описываются одной универсальной зависимостью:

Eqn112.wmf

где A(r) – физическое свойство частицы минерала радиусом r; А0 – физическое свойство массивного образца. Во всех случаях d определяется соотношением (13).

Фундаментальная причина такой универсальной зависимости пока не ясна и требует дальнейших исследований.


Библиографическая ссылка

Портнов В.С., Юров В.М., Исагулов А.З., Сергеев В.Я., Орынгожина С.Е. Размерные эффекты и физические свойства минералов // Современные наукоемкие технологии. – 2013. – № 4. – С. 85-88;
URL: https://top-technologies.ru/ru/article/view?id=31613 (дата обращения: 21.11.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674