В числе ключевых стратегических задач развития экономики выделяют задачи энергосбережения и снижения энергоемкости ВВП (Федеральный закон № 261-ФЗ). Энергосбережение в любой сфере сводится по существу к снижению потерь энергии. Известно, что большая часть потерь (до 90 %) приходится на сферу энергопотребления. Структуру потребителей электроэнергии обобщенно можно представить следующим образом: электроприводы, в первую очередь общепромышленного назначения, – 62 %, электрический транспорт – 9 %, электротермия и электротехнология – 8 %, освещение и прочие потребители – 21 %. Наиболее широко в составе электропривода применяются асинхронные электродвигатели (АД). На сегодняшний день насчитываются тысячи видов и наименований таких машин, применяемых практически во всех областях деятельности. Соответственно, задачи улучшения характеристик АД представляются ключевыми в контексте снижения энергоемкости технологических процессов [1, 2]. Так, в странах Европейского союза Директива ЕС 640/2009, предписывающая соответствие требованиям класса энергоэффективности IE3 (Premium Efficiency), начиная с января 2015 г. распространяется на двигатели номинальной мощностью 7,5–375 кВт и с 2017 г. на двигатели мощностью 0,75–375 кВт [3].
Со времени изобретения АД лишь в течение последних десятилетий технология их изготовления подвергалась модернизации: за рубежом в заметном количестве на фоне мирового годового выпуска более 7 млрд двигателей производятся так называемые энергоэффективные двигатели. Необходимо отметить, что они достигают наилучших характеристик в номинальных режимах при постоянных нагрузке и напряжении питающей трехфазной сети. При этом в условиях реальной эксплуатации большинства электрических приводов значительная часть времени работы АД приходится на переходные процессы. Соответственно, применяемые энергоэффективные АД не могут заменить в большинстве случаев, как правило, более дорогостоящие и менее надежные двигатели постоянного тока.
На сегодняшний день повышение энергоэффективности АД достигается преимущественно за счет увеличения доли новых дорогостоящих электротехнических материалов. В качестве возможных путей решения задач улучшения энергетических и эксплуатационных характеристик АД предлагается применение новых конструкций совмещенных обмоток (СО), при которых схемы обмоток совмещают в себе соединения типов «звезда» и «треугольник» [4, с. 150, 5], а также использование специализированных информационных технологий и компьютерных моделей для проектирования и перепроектирования энергоэффективных электрических машин. Технология СО имеет доказанную эффективность, подтвержденную опытно-промышленной эксплуатацией на предприятиях в РФ модернизированных серийных АД, при этом не утрачивает актуальности необходимость ее развития и создания новых конструктивных решений, удовлетворяющих повышающимся требованиям к качеству технологических процессов [6, с. 12].
На сегодняшний день широко применяются методы математического описания оборудования, расчета и анализа электромагнитных и электромеханических процессов, а также методы решения задач, которые возникают в процессе моделирования и анализа конструкций электроприводов. Одной из центральных задач машинного проектирования АД является моделирование параметров электромагнитных полей с достаточной точностью и достоверностью для разработки конструктивных решений, обеспечивающих улучшение прежде всего моментных характеристик АСД [7, с. 34, 35, 8, с. 43]. Ряд ученых и специалистов считают, что проектирование современных асинхронных двигателей с позиций идеализированной асинхронной машины является недостаточно обоснованным, потому что использование аналитической теории асинхронной машины в некоторых случаях приводит к возникновению существенных погрешностей при проектировании. Для проектирования АД рекомендуют применять аналитическую теорию асинхронной машины с учетом того, что допущения идеализированной машины зачастую могут приводить к наличию значительных погрешностей.
Для решения задач повышения энергоэффективности АД и реализации преимуществ конструкций СО предложена разработка конструктивных решений на основе параметрической оптимизации и расчета характеристик АД в специализированных программных средах. В частности, для расчета, моделирования разработки и проверки конструктивных решений была выбрана среда ANSYS Maxwell. Она позволяет выполнять аналитический расчет характеристик электрической машины с учетом ее типа, геометрических параметров, свойств материалов, параметров обмоток, моделирования напряженности магнитного поля, индукции, магнитного потока и др., использовать параметрический анализ и методы оптимизации, а также работать с постпроцессором для расчета и оптимизации решений, основанных на анализе создаваемых компьютерных моделей [9]. При моделировании АСД исследуются конструкции обмоток и элементов магнитопровода машины для создания конструктивных решений, обеспечивающих достижение целевых показателей выбранных параметров, а также учитываются результаты промежуточных испытаний создаваемых образцов для доработки моделей и решений [10, с. 47].
Сравнение результатов серии проведенных лабораторных испытаний общепромышленных АСД с результатами анализа моделей тех же машин показало расхождения, не превышающие 1 %, что позволило сделать вывод о высокой достоверности методов машинного проектирования, основанных на исследовании компьютерных моделей, создаваемых с помощью выбранного инструментария.
В табл. 1 представлены результаты измерения электрических параметров в ходе сравнительных испытаний АД АИР 71В4 с неизмененной заводской трехфазной обмоткой и с разработанной на основе результатов моделирования совмещенной обмоткой статора, выполненных на базе лаборатории БГТУ им. В.Г. Шухова: 1 – АСД заводского исполнения, 2 – модернизированный АСД с СО. В качестве нагрузки к выходной цепи генератора присоединялись автомобильные лампы накаливания, набранные группами для создания нагрузки в (10, 25, 50, 75, 100, 125) % от паспортной номинальной мощности АД (0,75 кВт).
Рис. 1. Графики тока и активной мощности сравниваемых образцов АД
Таблица 1
Результаты сравнительных испытаний АД АИР 71В4 в заводском исполнении и после модернизации
Нагрузка, % от номинальной |
0 (без ремня) |
10 |
25 |
50 |
75 |
100 |
125 |
Улучшение характеристики, раз |
|||||||
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
||
Ток, А |
2,2 |
1,1 |
2,2 |
1,2 |
2,2 |
1,25 |
2,15 |
1,4 |
2,2 |
1,6 |
2,3 |
1,8 |
2,5 |
2,13 |
2,00 |
Активная мощность P |
228 |
91 |
331 |
212 |
545 |
433 |
705 |
600 |
890 |
794 |
1030 |
945 |
1300 |
1235 |
2,51 |
Реактивная мощность ВАр |
1520 |
796 |
1430 |
780 |
1350 |
753 |
1283 |
743 |
1250 |
760 |
1200 |
770 |
1158 |
823 |
1,91 |
Полная мощность ВА |
1540 |
800 |
1470 |
803 |
1450 |
872 |
1470 |
954 |
1527 |
1104 |
1585 |
1217 |
1748 |
1490 |
1,93 |
Cos φ (коэффициент мощности) |
0,14 |
0,12 |
0,22 |
0,26 |
0,3 |
0,36 |
0,47 |
0,72 |
0,58 |
0,72 |
0,65 |
0,77 |
0,74 |
0,83 |
1,17 |
Рис. 2. Графики реактивной мощности и полной мощности сравниваемых образцов АД
Рис. 3. Графики изменения коэффициента мощности сравниваемых образцов АД
Рис. 1–3 иллюстрируют изменения характеристик АД в результате замены обмоток на совмещенные.
Было установлено, что значительное изменение основных характеристик АД № 2 обусловлено непосредственно модернизацией и находится за пределами погрешности измерений. Зафиксировано существенное улучшение характеристик АД практически во всех режимах и рост КПД в более широком диапазоне нагрузок. Результаты позволяют сделать вывод о том, что в процессе реальной эксплуатации привод с модернизированным двигателем позволит получить сокращение энергопотребления в пределах 14–20 % от фактического потребления привода с двигателем в заводском исполнении.
Необходимо отметить, что внесенные изменения ограничивались заменой обмоток статора двигателя № 2: были изменены схема укладки катушек статора и коммутация катушек в соответствии со схемой СО, при этом механическая часть двигателя изменениям не подвергалась.
Помимо возможностей модернизации существующего парка электрических машин в процессе исследования применения СО и реализации их преимуществ также рассматриваются возможности создания новых конструктивных решений и перепроектирования применяемых АД [11, с. 60, 12].
В табл. 2 представлены результаты проведенного моделирования и сравнения (расчетные) работы электродвигателей АДММ56А2: в стандартном исполнении (1), перемотанного (2 – модернизированного аналогично упомянутому выше двигателю АИР 71В4) и перепроектированного (3), т.е. подвергнутого как замене схемы обмоток, так и изменению механических частей, в частности геометрических параметров пластин ротора и статора.
Таблица 2
Результаты моделирования работы АД АДММ56А2
Характеристика |
№ 1 |
№ 2 |
№ 3 |
Номинальная мощность, кВт |
0,18 |
||
Номинальный момент, Н*м |
0,66 |
||
Номинальное скольжение, % |
13 |
||
Номинальные обороты, об/мин |
2610 |
||
Обороты при номинальном моменте, об/мин |
2830,22 |
2847,92 (+0,6 %) |
2884,49 (+1,9 %) |
Момент при номинальных оборотах, Н*м |
1,19 |
1,37 (+15,12 %) |
1,73 (+45,37 %) |
Пусковой момент, Н*м |
1,31 |
2,12 (+61,83 %) |
2,92 (+122,9 %) |
Максимальный момент, Н*м |
1,66 |
2,17 (+30,72 %) |
2,92 (+75,9 %) |
КПД при загрузке 100 % номинала стандартного двигателя, % |
78,01 |
87,88 (+9,87) |
85,56 (+7,55) |
КПД при загрузке 75 % номинала стандартного двигателя, % |
77,8 |
86,76 (+8,96) |
82,69 (+4,89) |
КПД при загрузке 50 % номинала стандартного двигателя, % |
73,2 |
83,2 (+10) |
79,04 (+6,02) |
КПД максимальный, % |
78,05 |
88,18 (+10,13) |
86,48 (+8,43) |
Результаты расчетов и анализа моделей говорят о существенном улучшении моментных характеристик модернизированного (перемотанного) и в особенности перепроектированного двигателя, что может быть использовано для снижения энергопотребления и повышения качества технологических процессов в механизмах с переменной производительностью для АД в составе частотно регулируемого привода.
Установлено значительное повышение КПД перепроектированного и модернизированного АСД в широком диапазоне нагрузок, также характерном для электроприводов, работающих преимущественно за пределами номинальных режимов.
Кроме приведенных, имеется ряд результатов, доказывающих целесообразность и практическую значимость примененных методов машинного проектирования электрических машин, в частности АСД, на основе анализа компьютерных моделей, а также модернизации существующего парка машин [13, с. 45]. В частности, применение СО, а также перепроектированных элементов магнитопровода АД для ряда машин общепромышленного и специального назначения позволило добиться существенного улучшения энергетических и эксплуатационных характеристик, в частности снижения энергопотребления от 12 до 50–60 % при той же полезной работе, увеличение срока службы приводов за счет снижения уровня вибраций, снижение уровня электромагнитных помех, генерируемых в сеть, возможность повышения класса энергоэффективности АД и перевода оборудования на использование двигателей меньшей мощности.
Тем не менее следует отметить необходимость и возможность усовершенствования используемых решений. В частности, специалисты отмечают недостаточную изученность частотного механизма управления АД (частотно-регулируемый привод) [13, с. 43], особенно в сетях с тяговыми нагрузками, что снижает надежность энергосистем и эффективность мер по энергосбережению. Результаты моделирования, опытно-промышленной эксплуатации энергоэффективных электроприводов на базе АД с СО и результаты исследования их влияния на питающие сети позволяют сделать также обоснованные предположения о том, что масштабное внедрение таких приводов позволит обеспечить и устойчивость энергосистем с относительно небольшими издержками за счет снижения уровня генерируемых помех [14, с. 168, 169]. В связи с этим решение задач, связанных с этой проблемой, в совокупности с внедрением методов и средств повышения энергоэффективности электроприводов на базе АД представляется перспективным и актуальным направлением развития электротехнической отрасли.