Scientific journal
Modern high technologies
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 0,940

PHYSICO-CHEMICAL PROPERTIES OF FLUX, DIETHYLDIBENZYLAMMONIUM BROMIDE, FOR LOW-TEMPERATURE SOLDER PASTES

Polezhaeva N.I. 1 Romulov A.V. 2
1 Reshetnev Siberian State University of Science and Technology
2 JSC Design bureau «Iskra»
This article is dedicated to the research of physico-chemical properties of low-temperature solder flux (diethyldibenzylammonium bromide), used in surface-mount technology. Differential scanning calorimetry and thermogravimetric analysis indicates that this substance is chemically active within the temperature range of 140–210?°С while heated in atmospheric air. Thermal analysis, performed in inert argon atmosphere during heating, shows that quaternary ammonium salt completely decomposes within the temperature range of 140–250?°С, losing 99?% of its initial mass. Mass spectrometric analysis revealed that residue from thermal decomposition of flux consists of ethane, butane, butene, acetylene and bromine-containing fragmentary ions. Gaseous products of diethyldibenzylammonium bromide thermal destruction aren`t capable of causing corrosion of electronic apparatus when condensed on the suface of the circuit board. After-fusion residues of the flux binder – rosin-modified polyester resin and diethyldibenzylammonium bromide – are non-corrosive and non-conductive. This allows to exclude plate cleaning and repair and decrease amount of defects, and therefore allows to reduce labor input and expenses of electronic devices production.
flux
diethyldibenzylammonium bromide
organic binder
polyester resin
rosin-modified
flux-binder
solder paste
surface-mount technology

Поверхностный монтаж – технология изготовления электронных устройств, а также связанные с данной технологией методы конструирования печатных узлов [1].

Целью технологии является качественный результат пайки с максимальной повторяемостью. Это основные требования при крупносерийном и мелкосерийном производстве [1].

Выбор материалов для пайки является самым сложным, так как необходимо подобрать паяльную пасту, соответствующую требованиям технологии поверхностного монтажа [2].

Флюс, являясь компонентом паяльной пасты, обеспечивает прохождение процесса пайки.

Целью данной работы является исследование физико-химических свойств флюса, бромида диэтилдибензиламмония, для низкотемпературных паяльных паст.

Материалы и методы исследования

В качестве флюса для низкотемпературной паяльной пасты использовали бромид диэтилдибензиламмония [N (C2H5)2(C6H5СН2)2]Br [3].

Комплексный термический анализ бромида диэтилдибензиламмония проведен с помощью cинхронного термоанализатора STA 449 Jupiter (фирмы NETZSCH), сочетающего одновременное измерение изменений массы (термогравиметрия) и тепловых потоков (дифференциальная сканирующая калориметрия) и совмещенного с квадрупольным масс-спектрометром QMS 403 Aeolos (фирмы NETZSCH) для анализа газов, выделяющихся при нагревании образцов. Использовался платина/платино-родиевый держатель (TG-DSC cенсор типа S) в сочетании с корундовыми (Al2O3) тиглями c проколотыми крышками [4–6]. Флюс, бромид диэтилдибензиламмония, подвергался нагреванию от температуры 40 °С до 600 °С по температурной программе со скоростью 5 град/мин, в динамической атмосфере аргона (скорость потока газа: 30 мл/мин.) [5].

Квадрупольный масс-спектрометр (ионизация электронным ударом) подключен к STA с помощью линии подачи газов с постоянной температурой 230 °С. Масс-спектрометр QMS 403 позволяет определить массовые числа от 1 до 300 а.е.м. Данные, полученные с масс-спектрометра, программно объединены с данными STA системы [4–6].

Результаты исследования и их обсуждение

Паяльная паста представляет собой суспензию порошка припоя в флюсующей связующей [7].

Без флюса пайка становится невозможной [8]. Даже незначительное окисление предотвращает нормальное смачивание места пайки.

Флюс – компонент паяльных паст должен хорошо растворяться в органической связке; не взаимодействовать с порошком припоя при хранении пасты; проявлять химическую активность при температуре пайки; обладать возможно меньшими коррозионным воздействием и токсичностью [1].

Механизм действия флюса заключается в том, что окисные пленки металла и припоя растворяются или разрыхляются и всплывают на поверхности флюса. На поверхности очищенного (активированного) металла образуется защитный слой флюса, препятствующий возникновению новых окисных пленок и загрязнений (если сам флюс не разлагается при перегреве). Жидкий припой должен замещать флюс и взаимодействовать с основным металлом. Поэтому смачиваемость припоем спаиваемых поверхностей должна быть больше, чем у флюса [9].

Химическая активность флюса, используемого в технологии поверхностного монтажа, должна проявляться только при температуре пайки. При температурах эксплуатации аппаратуры флюс должен быть нейтральным и некоррозионноактивным [9].

Термический анализ показал, что бромид диэтилдибензиламмония химически активен при рабочих температурах оплавления низкотемпературных паяльных паст 140–250 °С (рис. 1).

Дополнительное требование к флюсу состоит в том, что он не должен образовывать агрессивных паров, которые, конденсируясь на компонентах печатных плат, вызывают коррозию металлических поверхностей и влияют на работу электронной аппаратуры [9].

Для определения продуктов термодеструкции бромида диэтилдибензиламмония был проведен его термический масс-спектрометрический анализ в инертной атмосфере.

При нагревании бромида диэтилдибензиламмония в интервале 140–250 °С происходит полное разложение четвертичной аммониевой соли с потерей 99 % исходной массы (рис. 1).

Этот процесс описывается на кривой DSC сдвоенным эндотермическим эффектом с максимумами при температурах 174,4 °С и 185,1 °С. Энтальпия разложения бромида диэтилдибензиламмония составила DН = 555,50 ± 0,01 Дж/г.

Результаты масс-спектрометрического анализа (рис. 2) показали, что разложение бромида диэтилдибензиламмония начинается с отщепления от молекулярного иона бензильных заместителей С6Н5СН2+ (m/z 91) с образованием третичного (m/z 163) или вторичного (m/z 73) аминов, с последующим отщеплением этильного заместителя C2H5+ (m/z 29) и элиминированием молекулы этилена (m/z 28) по схеме 1.

Кроме того, в масс-спектре разложения бромида диэтилдибензиламмония зафиксированы различные углеводороды: этан (m/z 30), бутан (m/z 58), бутен (m/z 56) – продукты рекомбинации отщепляющихся этильных заместитетелей, ацетилен (m/z 26) – продукт перегруппировки бензильного катиона, который, в свою очередь, распадается с отщеплением ацетилена:

В масс-спектре продуктов разложения бромида диэтилдибензиламмония присутствуют также бромсодержащие осколочные ионы с m/z 81, 82, 96, 110.

Остатки флюсующего связующего после пайки должны быть нейтральными и не вызывать коррозию электронной аппаратуры.

В процессе оплавления паяльной пасты основная часть флюсующего связующего испаряется и выгорает, оставшаяся же часть должна быть некоррозионной и непроводящей. На коррозионную активность флюс-связка после оплавления была проверена на медных пластинках в камере влаги: температура (40 ± 2) °С, время 21 день, влажность (93 ± 3) % [10]. Полученные результаты показали, что оставшаяся часть после оплавления флюса-связки некоррозионноактивна [11]. Удельное объемное сопротивление оставшейся части после оплавления и выдержки ее в камере влаги составило в среднем 1,7×1013 Ом×м [3].

polSH1.wmf

Схема 1. Разложение катиона диэтилдибензиламмония при нагревании в инертной атмосфере

polSH2.wmf

Схема 2. Распад бензильного катиона

pol1.tif

Рис. 1. Кривые TG и DSC для бромида диэтилдибензиламмония при нагревании в инертной атмосфере

pol2.tif

Рис. 2. Фрагмент масс-спектра бромида диэтилдибензиламмония при нагревании в инертной атмосфере

После пайки остатки флюсующего связующего, полиэфирной смолы, защищают металлические поверхности от контакта с окружающей средой. Полиэфирная смола является хорошим диэлектриком, но при этом она чувствительна к внешним воздействиям и разрушается при температурных колебаниях. Разрушение полиэфирной смолы приводит к попаданию на поверхность печатных плат продуктов термодеструкции, которые обладают проводимостью и вызывают коррозию при соприкосновении с влагой.

Считается, что безотмывочные пасты не должны содержать галогенов. Однако в процессах без отмывки после пайки можно использовать и галогенсодержащие пасты, ибо вопрос «мыть или не мыть?» следует решать только исходя из требований надежности готового продукта [7].

Заключение

Комплексным термическим анализом установлено, что флюс бромид диэтилдибензиламмония в интервале температур 50–140 °С химически активен и не изменяет состав при нагревании. С повышением температуры от 140 до 250 °С происходит полное разложение бромида диэтилдибензиламмония с потерей 99 % исходной массы.

Масс-спектрометрическим анализом показано, что при разложении бромида диэтилдибензиламмония не образуется агрессивных паров, обладающих коррозионным воздействием на электронную аппаратуру.

Оставшаяся часть флюса-связки после пайки является некоррозионноактивной и непроводящей, что позволяет исключить стадию отмывки печатных плат и их ремонт, что снижает трудоемкость при изготовлении электронных устройств.