В последнее десятилетие возросли требования к качеству депарафинизации (ДП) нефти и нефтепродуктов, в частности, дизельного топлива (ДТ). Кроме того, актуальна ДП самого сырья (нефти) непосредственно в районах ее добычи, поскольку парафинистые нефти (П > 6,0 % мас.) имеют высокие температуры застывания ТЗ и вязкость, что требует больших расходов энергии при их переработке и транспортировке, предупреждению накопления асфальто-смолисто-парафиновых отложений (АСПО). Серьезные проблемы возникают в зимнее время с нефтями, поставляемыми на экспорт по ГОСТ 51858, требующими подогрева для транспортировки нефти.
Существующие технологические процессы депарафинизации
Существуют несколько технологий депарафинизации сырья и нефтепродуктов:
– сольвентная, когда ДТ смешивается с растворителем, после чего смесь охлаждается до определенной ТЗ, требуемой для депарафинированного ДТ, парафины, выпадающие в осадок отфильтровываются, и от целевого продукта отгоняется растворитель;
– карбамидная ДП, основанная на комплексообразовании карбамида К с П и отличающаяся от сольвентной возможностью проведения процесса при положительных температурах. По одному варианту используется насыщенный раствор К в смеси с водой и изопропанолом. Для поддержания постоянной концентрации К процесс ведут в переменном температурном режиме;
– карбамидно-кристаллическая ДП, обладающая повышенной активностью по сравнению с раствором К. В процессе сырье или его бензиновый раствор контактирует с кристаллическим К в присутствии активатора (метанола) с образованием комплекса. Далее его промывают и делят на твердую и жидкие фазы в центрифугах, отмывают водой;
– карбамидно-сольвентная ДП фирмы Edeleanu Geselschaft (Германия), позволяющая депарафинировать углеводроды С10-С40, при которой используют насыщенный раствор К при 70 °С, второй агент дихлорметилен СН2Сl2, выполняющий роль активатора и растворителя и служащий регулятором теплосъема в стадии комплексообразования. За счет его испарения в зоне реакции поддерживается температура Т = 30–45 °С;
– каталитическая, при которой молекулы П сначала расщепляются, а далее изомеризуются на катализаторах при повышенном давлении и избыточном содержании водорода Н.
Для ДП нефти в ИХН СО РАН разработана технология частичного удаления из нефти парафинов, асфальтенов (А) и смол (С) сжиженным природным газом, которая позволяет на 50 % снизить концентрацию высокомолекулярных П и на 60 % А и С.
В ОАО «ТатНИИнефтемаш» разработаны передвижные (на автотранспорте) агрегаты АДПМ для депарафинизации нефтяных скважин горячей нефтью производительностью 12–16 м3 при давлении 13–16 МПа, температурой нагрева 150 °С.
Последняя разработка по ДП ДТ [1] включает смешение сырья с 0,05–0,25 % мас. поверхностно-активных веществ (ПАВ), в качестве активатора введение 0,05–0,15 % мас. высших жирных спиртов (ВЖС) фракции С10-С18, термообработку полученной смеси, охлаждение ее до температуры депарафинизации в постоянном электрическом поле. В результате выход депарафинированного ДТ вырастает с 72,2 % до 83,6 %. Эффект электродепарафинизации осаждением П на электродах в электрических полях высокого напряжения можно объяснить 4,5–5,5- кратным эффектом двойного электрофореза путем индуцирования электрокинетических потенциалов на поверхности кристаллов П.
Но для реализации всех этих описанных методов ДП требуется тщательный контроль ТЗ, концентраций П, А и С, воды, вязкости h20 фаз и конечного продукта.
На настоящий момент в нефтедобыче и переработке имеется потребность в экспресс-анализаторе, способном контролировать концентрацию парафина и ТЗ, не разделяя их на фазы и не используя движущихся деталей [2, 3].
Наши исследования [4, 5] показывают, что из всех известных метод ядерного магнитного резонанса (ЯМР) является, пожалуй, единственным, способным одновременно контролировать ТЗ, концентрацию П, А и С, воды, вязкость h,20, плотность r20, а также такие важные характеристики водо-органических смесей, как дисперсность (распределение размеров капель воды) фаз и конечного продукта, что актуально для совершенствования любых из перечисленных процессов депарафинизации.
Цель статьи – анализ состояния проблемы снижения концентрации П в нефтях/нефтепродуктах и описание разработанных ЯМР-анализатора и установки с контролем и управлением от релаксометра ЯМР.
Аппаратура для экспресс-анализа параметров нефтей и нефтепродуктов
Для контроля в проточном (on-line) режиме нефтей и нефтепродуктов был разработан проточный ЯМР-анализатор [6, 7] и проведены его метрологические испытания, показавшие его соответствие техническим условиям ОАО «Татнефть». Предложен ряд методик экспресс-анализа параметров нефти, мазута и битумов [8–12]. Запатентована [13] конструкция проточного ЯМР-анализатора с управлением от контроллера STK500 ATMEGA 8515L. В нем повышена представительность пробоотбора использованием принципа турбулизации потока на основе уравнения Бернулли:
Pi /ρg + νi2/2g = const, (1)
где Рi – давление в разных сечениях трубы Si при скоростях потока νi. Если расход Qi постоянен, то в сечении Si он равен Qi = Siνi = const.
Поток жидкости, попадая в расширение трубы, снижает скорость v и увеличивает давление Р. В результате происходит интенсивное перемешивание смеси, которая через входной патрубок поступает со скоростью νi, определяемой положением патрубка в датчик магнита ЯМР-анализатора и выходит через выходной патрубок в магистральную трубу. В результате, скорость потока будет определяться разницей максимального Pmax и давлений Pi в сечении Si. При расположении патрубка в сечении на уровне магистральной трубы эта разница минимальна независимо от скорости в трубе, и скорость движения потока через датчик ЯМР также будет минимальной, что необходимо для измерения ЯМР-параметров как бы «в остановленном потоке». Отпадает необходимость реальной остановки потока, что позволяет отказаться от взрывозащищенных вентилей, имеющих ограниченный ресурс работы. Далее измеряются времена спин-спиновой релаксации Т2А.
Установленная зависимость Т2А(П) (м/сек) от концентрации П с коэффициентом корреляции R2 = 0,985 и погрешностью < 2 % описывается уравнением
Т2А = 970,3 ехр(– 0,0044П). (1)
Отсюда концентрация парафина П( %) определяется из соотношения:
П = 1563,6 – 227×ln(Т2А). (2)
Зависимости ТЗ от П для ДТ описываются c коэффициентами корреляции R2 = 0,889 и R2 = 0,974 и погрешностью < 2,5 % уравнениями:
ТЗ = – 66,8 + 2,73П для П < 7 %, (3)
ТЗ = – 50,5 + 0,38П для П > 7 %. (4)
Установка по снижению концентрации парафина в нефтях и нефтепродуктах
Анализ методов депарафинизации позволяет выделить несколько стадий, общих для всех методов: входной/выходной контроль нефти/нефтепродукта на концентрацию П, А и С, воды W, вязкости h20 и плотности r20 фаз и конечного продукта; контроль соотношения растворитель/сырье при смешивании, деление на твердую и жидкие фазы, промывка/отмывка водой. Все эти процессы могут контролироваться ЯМР-анализатором.
Рис. 1. Технологическая схема установки для удаления воды и парафина из нефти. Здесь 1 – блок удаления воды и разделения фаз во вращающихся магнитном и неоднородном электрическом полях, 2 – магнит с датчиком ЯМР-анализатора, 3 – емкость для нефти или нефтепродукта, 4 – реагент, 5 – блок перемешивания нефти с реагентом, 6 – шестеренный насос, 7 – емкость для очищенной нефти, 8 – трехходовой кран, 9 – автоматический кран. УМРЧ – усилитель мощности радиочастотных сигналов, УЯМР – усилитель ЯМР-сигналов
Технологические аспекты работы установки по снижению концентрации П базируются на исследованиях [12–15], в которых данные отдельные стадии процесса реализованы методом ЯМР-релаксометрии (ЯМРР). Технологическая схема установки для удаления П из нефти представлена на рис. 1.
Процесс снижения концентрации парафина включает стадии:
1. Входной контроль физико-химических свойств сырья (концентрации П, воды W и вязкости) экспресс-методом в ЯМР-анализаторе. Контроль W сырья заключается в:
1) в предварительном измерении эффективных времен спин-спиновой релаксации чистой воды Т2в и чистой нефти/нефтепродукта Т2н во временном интервале t = 2Nt , где N – число импульсов в последовательности Карра-Парселла-Мейбум-Гилла, t – интервал между импульсами;
2) измерении эффективного Т2* времени релаксации в контролируемой нефти в том же интервале;
3) определении влажности нефти по формуле:
W = T2в (T2* – T2н )×100 %/T2*(Т2в – Т2н).
Погрешность при однократных (без накопления) проточных измерениях составляет ± 2,75 %.
Рис. 2. Схема устройства для удаления воды/комплексов во ВМП и ВНЭП. Здесь 1 – поверхность воды, 2 – конические электроды, 3 – обмотки для создания ВМП, 4, 5 и 6 – патрубки ввода сырья, вывода отделенной воды/комплексов и обезвоженного углеводорода, 7 – зона действия ВМП и ВНЭП, 8 – отстоявшаяся вода/раствор комплекса
2. Снижение W в нефти/нефтепродукте в блоке 1 для удаления воды и разделения фаз во вращающихся магнитном (ВМП) и неоднородном электрическом (ВНЭП) полях по патенту [16]. Схема блока 1 для нефти приведена на рис. 2, его фото – на рис. 3.
Рис. 3. Фото устройства 1 с ВМП и ВНЭП
Во ВМП на капли воды, вытянувшиеся под действием электрического поля в диполи, действуют:
а) силы Лоренца FL = q×E = q×[v×B], где E – напряженность электрического поля (2,5 кВ/см), v – линейная скорость вращения магнитного поля, B – магнитная индукция поля;
б) силы градиента ВНЭП, стремящиеся сместить капли в зону максимальных Е и высокой концентрации, где капли коалесцируют и оседают на дно. Данный блок 1 более эффективен с [1], поскольку поля реориетируют диполи воды и комплексов и тем самым устраняют каналы пробоя и снижения напряженности Е [15, 16].
3. Смешение и эмульгирование нефти/нефтепродукта с реагентами в течение периода времени, необходимого для снижения концентрации П до необходимого уровня. Эмульгирование происходит также в пробоотборнике ЯМР-анализатора.
4. Непрерывный контроль дисперсности распределения капель раствора в эмульсии методом ЯМР по среднеарифметическому диаметру DСА(мкм) = ∑NiDi/∑Ni. Исследования показали, что зависимость DСА от времен спин-решеточной T1В релаксации воды с коэффициентом регрессии R2 = 0,95 описывается соотношением:
DСА = 0,16·exp(2,85·T1В). (5)
Процесс контроля дисперсности можно осуществлять также на микроскопе (наприме марки Microscope MC-300 (Austria)). Микрофото с увеличением 640 представлено на рис. 4. Хорошо видны образующиеся водно-парафино-асфальтеновые агломераты.
5. Водная фракция смеси, образующаяся в результате реакции сырья с реагентом удаляется в блоке 1 при непрерывном ЯМР экпресс-контроле концентрации П.
6. Блок 1 также может заменить дистилляционную установку для удаления комплексов П при депарафинизации способом [1].
7. Конечный контроль нефти, нефтепродукта на концентрацию П и закачка ее в нефтепровод, либо направление на новый цикл очистки от П.
Рис. 4. Микрофото эмульсии с водно-парафино-асфальтеновыми агломератами. Получено на микроскопе марки Microscope MC-300 (Austria) с увеличением 640
Технические преимущества установки: возможность автоматического многопараметрического ЯМР экспресс-контроля и управления процессом удаления или снижения концентрации П, широкий диапазон измерений П, W и DСА.
Заключение
1. Получены корреляции между концентрациями П, W и DСА в нефтях и ЯМР-параметрами.
2. Предложена технология очистки нефти/нефтепродуктов от парафина с управлением и непрерывным контролем процесса проточным ЯМР-анализатором.