Scientific journal
Modern high technologies
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 0,899

IDENTIFICATION OF TRACE QUANTITIES OF FLAMMABLE LIQUIDS WITH THE USE OF TWO-STAGE THERMAL DESORPTION

Mikhaylova S.M. 1 Sharifullina L.R. 1
1 Civil Defence Academy of EMERCOM of Russia
The investigation of the causes of a fire or fire at industrial facilities often leads to the fact that as the initiators of combustion was used with flammable or combustible liquids. However, delay in examination or high temperature in the combustion zone can result in the inability to detect trace amounts of residue after burning flammable liquids. With this regard, relevant is the application of modern methods of physical-chemical analysis, which allow to establish a presence in the air is fairly small quantities of such substances, spill, rough handling, or evil intention in the use of which could cause fire and damage. Such an accident can lead to subsequent fire or detonation, resulting in appropriate sanitary and material damage. Used in this paper chromatographic method of analysis with preliminary concentration of vapors of flammable liquids in the two-stage kiln. Evaluate the content of vapors of flammable liquids in air conducted a series of experiments with various amounts of spilled substances obtained chromatograms, which are further used for quantitative and qualitative identification of the burned-out vapour. In this paper, we investigated the minimum detectable quantity of flammable substances in air collected before and after combustion of the test mixture.
Fire safety
flammable liquids
two-stage thermal desorption
fire expertise

При несоблюдении соответствующих норм и правил по хранению и перевозке легковоспламеняющихся (ЛВЖ) или горючих (ГЖ) жидкостей возникает большая вероятность разлива этих опасных веществ с последующим образованием парогазового облака, то есть возникновением аварийной ситуации. Такая авария может привести к дальнейшему возгоранию или детонации, влекущими за собой соответствующий санитарный и материальный ущерб [2, 3]. Вопросы обнаружения остатков ЛВЖ или ГЖ на месте пожара остаются актуальными на протяжении длительного времени, что связано с быстрым их выгоранием при высоких температурах или длительном горении. Одним из широко распространенных физико-химических методов анализа является хроматография [4]. Однако возможности хроматографического анализа могут быть расширены за счет предварительной подготовки пробы методом двухстадийной термодесорбции. Разработка подобной методики и стала целью нашей работы.

Результаты исследования и их обсуждение

Горючие вещества и материалы способны самовозгораться, а также возгораться под воздействием источника зажигания и самостоятельно гореть после его удаления.

Из горючих жидкостей выделяют группы легковоспламеняющихся и особо опасных легковоспламеняющихся жидкостей, воспламенение паров которых происходит при низких температурах, определенных нормативными документами по пожарной безопасности [5].

Чем меньше количество опасных веществ в воздухе, тем сложнее их в дальнейшем обнаружить. Эти остатки могут быть обнаружены в количествах и в состоянии, не позволяющих получить какую-либо дополнительную информацию о них, кроме как констатировать их присутствие на месте пожара [1]. Даже решение «задачи-минимум», вне сомнения, полезно, ибо присутствие остатков ЛВЖ (ГЖ) там, где их быть не должно, о многом говорит эксперту и следствию.

Тем не менее современные методы позволили нам провести соответствующие исследования, вследствие чего стала бы возможной экспертиза объектов спустя большее время с момента аварии или поджога. При помощи современных инструментальных методов может быть установлен их компонентный состав, тип жидкости (например, бензин это или дизельное топливо) и даже, при достаточно высокой сохранности остатков, товарная марка продукта (например, бензин А-76 или растворитель для лаков и красок № 647). Установление состава, разновидности, групповой принадлежности, типа, марки и тому подобных характеристик обнаруженного вещества и является, как правило, при экспертизе пожаров «задачей-максимум». Полнота решения этой задачи зависит от степени выгорания (и, соответственно, степени сохранности) вещества и эффективности примененных методов исследования.

В результате проведенных исследований при различных условиях аспирации паров уайт-спирита и ацетона были проанализированы полученные хроматограммы и выбраны оптимальные условия отбора проб используемым аспиратором (таблица).

Оптимальные условия аспирации для количественной оценки содержания паров ЛВЖ в воздухе

Расход воздуха, мл/мин

200

Время аспирации, мин

10

Объем аспирированного воздуха, л

2

Для качественной оценки масс-спектрометрическим детектором были определены оптимальные условия термостатирования колонок хроматографа, но для повышения вероятности совпадения масс-спектров с базой данных рекомендуется провести дополнительные исследования жидкостей по каждому из полученных пиков.

При исследовании влияния на результаты способа ввода пробы толуола в хроматографическую колонку не выявлено больших отклонений, то есть при введении путем прямого прокалывания жидкости через мембрану хроматографа и при введении паров толуола с помощью термодесорбера время удерживания в хроматографической колонке примерно одинаковое. Также по результатам данного исследования было обнаружено отклонение времени удерживания толуола от данных, предоставленных литературными источниками. Таким образом, была подтверждена достоверность результатов, полученных по методике с использованием двухстадийного термодесорбера.

В качестве количественной оценки паров ЛВЖ в воздухе был произведен ряд опытов с различными количествами разлитого вещества, получены хроматограммы, которые далее использовались для количественной и качественной оценки выгоревших паров. Исследуемыми веществами являлись уайт-спирит и бензин марки А-76.

Расчет минимального детектируемого количества вещества осуществляется по формуле

νдет = C∙Vасп,

где С – концентрация паров, г/л; Vасп – объем аспирированного воздуха, л.

Минимальной детектируемой стала концентрация, г/л:

– для уайт-спирита – 1,53∙10–7;

– для бензина – 1,45∙10–6.

Таким образом, минимальное детектируемое количество веществ: для уайт-спирита 3,06∙10–7 г, для бензина 2,9∙10–6 г.

Выводы

По исследованиям выгорания паров ЛВЖ было установлено, что за одинаковое время горения, с одинаковой площади испарения смеси ЛВЖ, содержащие легкие фракции (лучше всего детектируемые используемым оборудованием), выгорают быстрее, чем вещества с большим содержанием тяжелых фракций. Исследование выполнено путем сравнения интенсивности пиков компонентов смеси, полученных после горения хроматограмм, с полученными хроматограммами в результате количественной оценки паров ЛВЖ в воздухе.

Анализ арбитражных проб показал, что изменение концентрации паров ЛВЖ за 1 минуту горения бензина меньше, чем у уайт-спирита, что можно объяснить присутствием тяжелых фракций нефтепродуктов.