Научный журнал
Современные наукоемкие технологии
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 0,909

СЖАТИЕ И АРХИВИРОВАНИЕ МЕДИЦИНСКИХ ИЗОБРАЖЕНИЙ

Пасечник А.С. Никитин О.Р. Архипов Е.А.
Способы сжатия графической информации можно разделить на 2 основные группы: сжатие без потери информации и сжатие с потерями. Алгоритмы первой группы не дают существенных результатов по степени сжатия. Алгоритмы второй группы выигрывают по степени сжатия, но полностью восстановить исходное изображение не удается. В некоторых случаях не обязательно восстанавливать изображение полностью, так как в нем находятся области, которые не несут полезной информации для потребителя, например, медицинские изображения: рентгеновские снимки, снимки УЗИ, эндоскопические снимки и пр. Предварительной фильтрацией изображения, путем наложения масок можно добиться сокращения размера файла на 25-30%.

По гистограмме распределения пикселей в изображении по уровням яркости видно, что на некоторых уровнях содержится большое количество информации, а на некоторых информации практически нет. Замечено, что 6-7 оптимально выбранных уровней достаточно, чтобы с приемлемым качеством восстановить сжатое медицинское изображение. Изображение представляется некой рельефной трехмерной моделью, где по длине и ширине находятся фактические размеры картинки, а по высоте откладывается уровень яркости. На определенных уровнях делаются срезы рельефной модели. Уровни определяются согласно формуле

f,

где Un - яркость текущего кодируемого слоя, Umax - максимальная яркость пикселей в изображении, N - число кодируемых слоев, n - номер кодируемого слоя f.

В итоге получается несколько двумерных массивов, состоящих только из нулей и единиц. В тех точках, где яркость не меньше заданной на данном уровне, в массиве стоит «1», в остальных «0». Такие массивы легко кодируются и сжимаются стандартными алгоритмами без потери информации. Далее, полученные на этом этапе файлы можно дополнительно упаковать при помощи существующих программ-архиваторов, таких как RAR, ZIP, ARJ. Это позволит еще больше сократить объем дисковой памяти, занимаемой информацией.

Задачей по улучшению качества сжатого изображения является задача выбора оптимальных уровней для кодирования и выбора оптимально алгоритма кодирования, который с приемлемым быстродействием позволил бы иметь наименьший объем файлов.

При восстановлении происходят обратные операции. Сначала из архива извлекаются закодированные файлы при помощи стандартных архиваторов, затем полностью восстанавливается информация, которая была закодирована. Следующим этапом является обработка полученного изображения с целью повышения качества снимка и его визуального восприятия. В тех точках изображения, которые не попали в кодируемые слои, значение яркости следует аппроксимировать по какому-либо алгоритму. Как один из способов заполнения предлагается использовать метод сеток. Значение яркости в текущей точке корректируется с учетом информации о яркости в соседних точках. Такая операция обычно производится в 2-3 прохода.

Описанный послойный алгоритм сжатия адаптирован для работы с черно-белыми изображениями и является модификацией LZW алгоритма GIF, но имеет ряд преимуществ. Экспериментально обоснована целесообразность предварительной фильтрации обрабатываемых изображений, а также обработки их после декомпрессии. Алгоритм может быть применен как альтернативный метод сжатия специализированных медицинских изображений, изображений получаемых при зондировании различных сред ультразвуковыми методами и пр., его можно применять для построения систем хранения, обработки и транспортировки подобных изображений по компьютерным сетям.


Библиографическая ссылка

Пасечник А.С., Никитин О.Р., Архипов Е.А. СЖАТИЕ И АРХИВИРОВАНИЕ МЕДИЦИНСКИХ ИЗОБРАЖЕНИЙ // Современные наукоемкие технологии. – 2005. – № 8. – С. 29-30;
URL: http://top-technologies.ru/ru/article/view?id=23448 (дата обращения: 20.11.2019).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074