Scientific journal
Modern high technologies
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 1,021

MAZHORITY SIGNALS WITH AN ACCEPTABLE LEVEL MISMATCH IN MAJORITY-REDUNDANT SYSTEM

Sytsevich N.F. 1 Kuliev R.S. 1 Krakhmalev D.V. 2 Zhaboev Zh.Zh. 1
1 Kabardino-Balkarian State University of Kh.M. Berbekov
2 Financial University under the Government of the Russian Federation
В настоящее время в автоматизированных системах управления технологическими процессами (АСУ ТП) широкое применение нашли мажоритарно-резервированные системы управления. При этом номенклатура функциональных модулей резервируемых комплектов постоянно увеличивается. В этой связи возникает одна из задач, суть которой сводится к мажоритированию сигналов с допустимым уровнем рассогласования параметров от функциональных модулей различных комплектов. В работе рассматриваются системы управления с тройным мажоритарным резервированием, работающие в режимах 1002, 1003, 2002, 2003. Целью проводимого исследования является повышение живучести мажоритарно-резервированных систем управления, в которых находят применение функциональные модули не критичные к разбросу выходных параметров в допустимых пределах. Решена задача мажоритирования сигналов с допустимым уровнем рассогласования параметров от функциональных модулей различных комплектов. Результаты работы могут быть использованы в АСУ ТП с мажоритарным резервированием аппаратной части с наработкой на отказ входящих в состав системы управления комплексов порядка 100000 часов.
Currently, the automated system of control of technological processes (ACS) have found wide application majority-redundant control system. This range of functional modules redundant sets is constantly growing. This raises one of the tasks, the essence of which boils down to mazhoritirovaniyu signals with an acceptable level of mismatch parameters from the various sets of functional modules. This paper considers a control system with triple redundant majority working in modes 1002, 1003, 2002, 2003. The purpose of the study is to improve the survivability of majority-redundant control systems, which are used in the functional modules are not critical to the spread of the output parameters within acceptable limits. The problem mazhoritirovaniya signals with an acceptable level of mismatch parameters from the various sets of functional modules. The results can be used in the APCS with the majority of hardware redundancy with MTBF included in the control system of complexes of the order of 100,000 hours.
redundant systems
majorityowned
majority element
system integration
the level of misalignment
signs of redundancy

Цель и задачи исследования

Целью проводимого исследования является повышение живучести мажоритарно-резервированных систем с тройным резервированием, в состав которых входят резервированные функциональные модули с допустимым уровнем рассогласования параметров. Для достижения поставленной цели решается задача мажоритирования сигналов с допустимым уровнем рассогласования параметров от функциональных модулей различных комплектов. Цель достигается за счет доработки схем контроля мажоритарных элементов и определения алгоритма обработки сигналов контроля работы мажоритарных элементов различных комплектов мажоритарно-резервированной системы.

В работах [1; 3] рассматривается возможность повышения живучести резервированных систем управления, в том числе мажоритарно-резервированных. В работе [1] cинтезирована схема управляемого мажоритарного элемента, позволяющая снизить вероятность отказа узлов с мажоритарным резервированием.

Однако в случае расхождения значений различных комплектов срабатывают схемы контроля работы МЭ, что затрудняет оценку погрешностей обработки сигналов функциональных модулей, таких как, например, аналого-цифровые преобразователи (АЦП).

В ходе проведенного исследования рассматривается вопрос мажоритирования сигналов различных комплектов в случае расхождения их значений в установленных допустимых пределах.

Разработка схемы обработки сигналов контроля мажоритарных элементов

sich1.tif

Рис. 1. Структурная схема системы комплексирования комплектов ПУ и КП

sich2.tif

Рис. 2. Функциональная схема управляемого мажоритарного элемента

На рис. 1 изображена схема системы комплексирования комплектов пункта управления (ПУ) и контролируемых пунктов (КП) автоматизированной системы управления технологическими процессами, в дальнейшем – АСУ ТП, где А, Б, В – это резервированные комплекты ПУ или КП; МСИ-А, МСИ-Б, МСИ-В – это магистрали системных интерфейсов комплектов А, Б, В соответственно [1].

В качестве исходных данных для схем резервирования введены следующие обозначения:

1) С – сигнал своего комплекта;

2) Л – сигнал левого комплекта;

3) П – сигнал правого комплекта;

4) ПУ – пункт управления;

5) КП – контролируемые пункты.

В работах [2; 4; 5] подробно рассмотрены вопросы синхронизации работы мажоритарных элементов резервированных комплектов.

В работе [1] синтезирована функциональная схема управляемого мажоритарного элемента, представленного на рис. 2.

На входы схемы поступают сигналы своего (С), левого (Л) и правого (П) комплекта (на рис. 2 изображена схема мажоритирования одного из разрядов комплекса).

В результате работы схем мажоритарных элементов на их выходах образуются собственно сигналы – результирующие значения мажоритирования входных величин (МЭ) от своего, левого и правого комплектов, а также соответствующие каждому сигналу на входе разряды контроля работы мажоритарных элементов (МЭ), говорящие о совпадении (КМЭ = 0) или несовпадении (КМЭ = 1) значений сигнала своего комплекта (С) с мажоритарным значением (МЭ). Сигналы КМЭ предполагается использовать в дальнейшем как для диагностики работы аппаратуры комплектов, так и для накопления достоверности в ходе их работы.

В работе [1] описано, как с помощью программно задаваемых признаков резервирования можно следить за работой каждого из комплектов комплекса в отдельности, т.е. обращаться к резервированным функциональным модулям комплектов как к нерезервированным с дальнейшей программной обработкой накопленной информации, т.е. реализовать программно режимы 1002,1003 работы комплектов. Основным недостатком в этом случае является то, что не всегда удается повысить достоверность полученных результатов по сравнению с мажоритарным режимом работы.

В ходе проведенного исследования авторы столкнулись с проблемой мажоритирования сигналов получаемых с выходов функциональных модулей аналого-цифровых преобразователей различных комплектов (А, Б, В), в дальнейшем – АЦП, так как значения параметров различных комплектов могут быть отличны друг от друга. Эта проблема возникает в режимах работы 2002, 2003 резервированных комплектов.

В ходе проведенного исследования решена задача мажоритирования сигналов с допустимым уровнем рассогласования параметров от функциональных модулей различных комплектов.

В качестве примера может быть рассмотрена схема мажоритирования сигналов с выходов функциональных модулей аналого-цифровых преобразователей, в дальнейшем – АЦП. При этом в качестве исходного требования примем – допустимый разброс параметров АЦП различных комплектов.

Например, в случае допустимого разброса параметров в один квант (для простоты изложения предположим, что на выходе АЦП восьмибитные данные) и значения комплектов А, Б, В соответственно равны 01000000, 00111111, 00111111. В результате мажоритирования получим значение 00111111. В этом случае сработают схемы контроля работы мажоритарных элементов в комплекте А разрядов с шестого по нулевой (КМЭ6-КМЭ0 = 1), т.е. будут зафиксированы несовпадения данных комплекта А с данными результатов мажоритирования в семи разрядах, хотя разница значений параметров сигналов не превысила один квант. Чтобы исключить наличие некорректности в работе комплекта А, задача мажоритирования может быть решена следующим образом.

Комплект А с помощью цепей коррекции инвертирует свои разряды с пятого по нулевой (5-0) прежде чем передать их значения соседним комплектам Б и В, что позволит уйти от ложных срабатываний цепей контроля мажоритарных элементов разрядов с пятого по нулевой.

Однако рассмотренное решение имеет ряд недостатков, таких как:

1) добавляется схема цепей коррекции сигналов подаваемых на входы мажоритарных элементов соседних комплектов;

2) в случае расхождения значений параметров сигналов различных комплектов, подлежащих мажоритированию, более чем в один кван, усложняется схема цепей коррекции сигналов подаваемых на входы мажоритарных элементов соседних комплектов, а также усложняется алгоритм обработки сигналов КМЭ.

Эти недостатки ограничивают применение в мажоритарно-резервированных системах функциональных модулей с допустимым, практически любым разбросом параметров, что особенно важно в АСУ ТП.

Для устранения этих недостатков в случае превышения уставки допустимого разброса значений параметров сигналов на входах мажоритарных элементов от различных комплектов будем фиксировать это в регистре состояния комплекта.

В ходе исследования предложен алгоритм обработки сигналов на выходе мажоритарных элементов. При этом необходимо доработать схему мажоритарной системы в части контроля ее работы, как показано на рис. 3.

sich3.tif

Рис. 3. Схема мажоритарной системы в части контроля ее работы

sich4.tif

Рис. 4. Функциональная схема управляемого мажоритарного элемента с доработкой

Основное назначение схемы заключается в определении превышения значений параметров сигналов заданной уставки допустимого рассогласования результатами мажоритирования различных комплектов ПУ или КП. Максимальный размер уставки рассогласования ограничивается только разрядной сеткой шины данных комплектов.

На рис. 3 приняты следующие обозначения:

1) СМЭ – схема собственно мажоритарных элементов;

2) РУР – регистр хранения значения допустимой уставки рассогласования сигналов своего комплекта с сигналами на выходе МЭ;

3) КМЭ10, КМЭ01 – регистры фиксирующие сигналы контроля работы МЭ;

4) СОРК – схема определения рассогласования кодов, поступающих от регистров КМЭ10, КМЭ01;

5) ССУ – схема сравнения кодов сигналов рассогласования с допустимой уставкой с выхода регистра РУР, задаваемой программно;

6) СПУР – сигнал превышения заданной уставки рассогласования.

Функциональная схема мажоритарного элемента, доработанная в части формирования сигналов контроля его работы, соответствующая схеме, представленной на рис. 3, приведена на рис. 4.

Здесь К10 – сигнал контроля работы мажоритарного элемента, означающий, что в этом разряде мажоритарный сигнал равен единице, а сигнал своего комплекта равен нулю; К01 – сигнал контроля работы мажоритарного элемента, означающий, что в этом разряде мажоритарный сигнал равен нулю, а сигнал своего комплекта равен единице. Дополнительно введем регистры для хранения результатов контроля работы мажоритарных элементов КМЭ10 и КМЭ01.

Рассмотрим работу схемы изображенной на рис. 3, при этом примем следующие допущения, упрощающие описание ее работы – будем оперировать с восьмибитными данными.

В качестве примера рассмотрим следующий. Предположим, что сигнал на выходе мажоритарной системы равен 00010101, а сигнал своего комплекта – 00001100 (т.е. расхождение значений своего комплекта с мажоритарным равно –9 = 12–21). В этом случае сработают цепи контроля работы мажоритарных элементов разрядов 4, 3, 0.

На выходе системы контроля работы мажоритарных элементов получим соответствующий код равный – 000К10 К0100К10 , т.е. в регистре КМЭ10 – 00010001(17), а в регистре КМЭ01 – 00001000(8).

Таким образом, на входы схемы СОРК поступят двоичные коды чисел 17 и 8, а на выходе схемы СОРК в результате получим 8 – 17 = – 9, т.е. значение кода сигнала рассогласования комплектов. Этот код поступит на вход схемы ССУ, где сравнится с кодом допустимой уставки рассогласования, заданной программно, и поступающего с выхода регистра РУР.

В случае если значение этого кода превышает значение уставки рассогласования, поступающей с выхода регистра РУР, будет сформирован активный сигнал – СПУР, который может быть записан в регистр состояния комплекта, доступного в программном режиме.

Наличие активного значения сигнала СПУР говорит о превышении заданной уставки рассогласования значений параметров сигналов, поступающих на входы мажоритарных элементов различных комплектов.

Выводы

Предложенный алгоритм обработки сигналов рассогласования может быть использован при обработке сигналов с выходов не только функциональных модулей АЦП, используемых при обработке сигналов ТИТ – телеизмерений текущих, но и любых других, например сигналов ТИИ – телеизмерений интегральных, сигналов ТУ – телеуправления и ТР – телерегулирования, в том числе в диагностических целях аппаратных средств систем резервирования.

В результате проведенного исследования предложена схема доработки мажоритарного элемента в части контроля его состояния, а также разработана схема анализа сигналов рассогласования в мажоритарно-резервированной системе со схемой резервирования – 2003, удовлетворяющая предложенному алгоритму обработки сигналов контроля работы мажоритарных элементов резервированных комплектов в режимах работы 1002, 1003, 2002, 2003.