Scientific journal
Modern high technologies
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 0,940

1 1
1
1137 KB

Является ли разрешимое произведение упорядочиваемых групп упорядочиваемой группой. Оказалось, что разрешимое произведение упорядочиваемых групп вовсе не обязано быть упорядочиваемым. Контрпример строится для случая двуступенно разрешимого произведения упорядочиваемых групп.

Пусть A группа с образующими a,b,c и определяющими отношениями: prilma26.wmf A является упорядочиваемой группой. Обозначив через prilma27.wmf фактор – группу prilma28.wmf группы A по её коммутанту A1, через prilma29.wmf бесконечные циклические группы и prilma30.wmf, где k,e,n целые числа, e=0 или I. Построим группу prilma31.wmf со следующими соотношениями:

prilma32.wmf

где prilma33.wmf группа G1 без кручения, причем, подгруппа ее prilma35.wmf является двуступенно разрешимой и prilma36.wmf.

В самом деле,

prilma37.wmf

Существенным является то, что prilma38.wmf, так

prilma39.wmf

Далее prilma40.wmf инвариантная абелева подгруппа группы prilma41.wmf абелева группа.

Возьмем группу prilma42.wmf и бесконечную циклическую группу {d*}. Тогда отображение prilma43.wmf при котором prilma44.wmf где prilma45.wmf можно продолжить до гомоморфизма, так как если некоторое слово равно единице в prilma46.wmf, то образ этого слова равен единице в G2. Здесь символ prilma47.wmf обозначает двуступенно разрешимое произведение. Но в силу того, что C действует нетождественно prilma49.wmf действует нетождественно на prilma50.wmf Получается, таким образом, что prilma51.wmf индуцирует автоморфизм второго порядка на группе prilma52.wmf и, следовательно, группа prilma53.wmf не является упорядочиваемой, действительно, полагая prilma54.wmf получаем:

prilma55.wmf,

а это недопустимо.

Таким образом, класс упорядочиваемых групп незамкнут относительно разрешимых произведений.